ACADEMIC REGULATIONS, COURSE STRUCTURE
AND DETAILED SYLLABUS

M.Tech (Computer Science)

FOR
MASTER OF TECHNOLOGY TWO YEAR POST GRADUATE COURSE
(Applicable for the batches admitted from 2014-2015)

R14

ANURAG
Engineering Engineers

ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)
SCHOOL OF ENGINEERING
Venkatapur, Ghatkesar, Hyderabad – 500088
ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)

M.TECH (Computer Science)

Course Structure and Syllabus

I Year I Semester

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Lectures</th>
<th>T/P/D</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A31011</td>
<td>Advanced Data Structures and Algorithms</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A31012</td>
<td>Computer System Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A31013</td>
<td>Advanced Operating Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A31014</td>
<td>Software Process and Project Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A31015</td>
<td>Elective -I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A31016</td>
<td>Distributed Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A31017</td>
<td>Natural Language Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pattern Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective -II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A31018</td>
<td>Machine Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A31019</td>
<td>Parallel and Distributed Algorithms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A31020</td>
<td>Software Architecture and Design Patterns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A31203</td>
<td>Advanced Data Structures and Algorithms Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>A31204</td>
<td>Seminar</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>18</td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>

I Year II Semester

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Lectures</th>
<th>T/P/D</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A32011</td>
<td>Advanced Network Programming</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A32012</td>
<td>Advanced databases</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A32013</td>
<td>Web Services and Service Oriented Architecture</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A32014</td>
<td>Wireless Network and Mobile Computing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A32015</td>
<td>Advanced Data Mining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A32016</td>
<td>Storage Area Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A32017</td>
<td>Database Security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective IV</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>A32018</td>
<td>Semantic Web and Social Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A32019</td>
<td>Cloud Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A32020</td>
<td>Information Retrieval systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A32203</td>
<td>Web Services Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>A32204</td>
<td>Seminar</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>18</td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>
II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A33204</td>
<td>Comprehensive Viva</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>A33205</td>
<td>Project Seminar</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>A33206</td>
<td>Project Work</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A34202</td>
<td>Project Work and Seminar</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>-</td>
<td>22</td>
</tr>
</tbody>
</table>
Academic Regulations for M. Tech (Regular) Degree Course
(Effective for the students admitted into 1 year from the Academic Year 2014-2015 onwards)

The M.Tech Degree of Jawaharlal Nehru Technological University Hyderabad shall be conferred on candidates who are admitted to the program and fulfill all the requirements for the award of the degree.

1.0 ELIGIBILITY FOR ADMISSIONS:
Admission to the above program shall be made subject to the eligibility, qualifications and specialization prescribed by the university from time to time.

Admissions shall be made on the basis of merit rank obtained by the qualifying candidate at an Entrance Test conducted by the University or on the basis of any other order of merit approved by the University, subject to reservations prescribed by the university from time to time.

2.0 AWARD OF M.TECH Degree:
2.1 A student shall be declared eligible for the award of the M.Tech degree, if he pursues a course of study and completes it successfully for not less than two academic years and not more than four academic years.
2.2 A Student, who fails to fulfill all the academic requirements for the award of the degree within four academic years from the year of his admission, shall forfeit his seat in M.Tech course.
2.3 The minimum instruction period for each semester is 90 clear instruction days.

3.0 COURSE OF STUDY
The following specializations are offered at present for the M.Tech Course of study.

1. CAD / CAM
2. Computer Science
3. Computer Science and Engineering
4. Electrical Power systems
5. Electronics and Communication Engineering
6. Embedded Systems
7. Machine Design
8. Power Electronics and Electrical Drives
9. Software Engineering
10. Structural Engineering
11. VLSI System Design
12. Wireless and Mobile Communications
13. Computer Networks and Information Security
14. Construction Management
4.0 ATTENDANCE:

The programs are offered on unit basis with each subject being considered as an unit.
4.1 A candidate shall be deemed to have eligibility to write end semester examinations in a subject if he has put in at least 75% of attendance in the subject.
4.2 Shortage of attendance up to 10% in any subject (i.e. 65% and above and below 75%) may be condoned by the college Academic council on genuine and valid reasons on representation by the candidate with supporting evidence.
4.3 A candidate shall get minimum required attendance at least in three (3) theory subjects in the present semester to get promoted to the next semester. In order to qualify for the award of the M.Tech Degree, The candidate shall complete all the academic requirements of the subjects, as per the course structure.
4.4 Shortage of attendance below 65% shall in no case be condoned
4.5 A stipulated fee shall be payable towards condonation of shortage of attendance.

5.0 EVALUATION:

The performance of the candidate in each semester shall be evaluated subject-wise, with a maximum of 100 marks for theory and 100 marks for practical’s, on the basis of internal evaluation and End semester Examination.

For the theory subjects 60 marks shall be awarded based on the performance in the End semester Examination, 30 marks shall be awarded based on the internal evaluation and 10 marks for assignment.

5.1 For theory subjects, during the semester there shall be 2 midterm examinations. Each midterm examination consists of one subjective paper and one assignment. The subjective paper is for 30 marks with duration of 2 hours. Subjective paper of each semester shall contain 2 parts Section-A & Section-B. Section-A comprises of five (5) short answer type of questions. The student has to answer all the questions from section-A. Each question carries two marks. A total of ten marks are allocated to section-A. Section-B consists of five (5) essay type of questions from which the student has to answer three questions. Each question carry not more than seven (7) marks. A total of 20 marks are allocated for section-B. The questions in the first midterm examination includes the topics of first 2.5 units while the questions in the second midterm examination includes the topics of remaining 2.5 units. The assignments should be submitted before the conduct of respective midterm examinations.

The total marks secured by the student are out of 40 marks (30marks from midterm examination and 10 marks from assignment) in an internal examination for a subject. The average of marks secured in two midterm examinations shall be taken as final marks. If he/she is absent for any test / assignment, he/she are awarded zero marks for that test / assignment.

5.2 For practical subjects, 60 marks shall be awarded based on the performance in the End Semester Examinations, 40 marks shall be awarded based on the day-to-day performance as internal marks.

5.3 There shall be two seminar presentations during I year I semester and II Semester. For seminar, a student under the supervision of a faculty member, shall collect the literature on
a topic and critically review the literature and submit it to the department in a report from
and shall make an oral presentation before the departmental committee. The departmental
committee consists of Head of the department, supervisor and two other senior faculty
members of the department. For each seminar there will be only internal evaluation of 50
marks. A candidate has to secure a minimum of 50% to be declared successful.

5.4 There shall be a Comprehensive Viva-Voce in II year I Semester. The comprehensive
Viva-Voce will be conducted by a committee consisting of Head of the Department and
two Senior Faculty members of the Department. The comprehensive Viva-Voce is aimed
to assess the students' understanding in various subjects he/she studies during the M.Tech
course of study. The Comprehensive viva-voce valued for 100 marks by the Committee.
There are no internal marks for the Comprehensive viva-Voce.

5.5 A candidate shall be deemed to have secured the minimum academic requirement in a
subject if he secures a minimum of 40% of marks in the End Examination and a minimum
aggregate of 50% of the total marks in the End Semester Examination and Internal
Evaluation taken together.

5.6 In case the candidate does not secure the minimum academic requirement in any subject
(as specified in 4.3) he has to reappear for the End Examination in that subject. A
candidate shall be given one chance to re-register for each subject provided the internal
marks secured by a candidate are less than 50% and he has failed in the end examination.
In such case candidate must re-register subject(s) and secure required minimum
attendance. Attendance in the re-registered subject(s) has to be calculated separately to
become eligible to write the end examination in the re-registered subject(s). The
attendance of re-registered subject(s) shall be calculated separately to decide upon the
eligibility for writing the end examination in those subject(s). In the event of taking
another chance, the internal marks and end examination marks obtained in the previous
attempt are nullified.

5.7 In case the candidate secures less than the required attendance in any subject(s), he shall
not be permitted to appear for the End Examination in that subject(s). He shall re-register
the subject when next offered.

5.8 Laboratory examination for M.Tech courses must be conducted with two Examiners, one
of them being Laboratory Class Teacher and second examiner shall be other Laboratory
Teacher.

6.0 EVALUATION OF PROJECT/DISSERTATION WORK:

Every candidate shall be required to submit thesis or dissertation after taking up a topic approved
by the project review committee.

6.1 A Project Review Committee (PRC) shall be constituted with Principal as chair person,
Heads of all the departments which are offering the M.Tech programs and two other
senior faculty members.

6.2 Registration of Project work: A candidate is permitted to register for the project work
after satisfying the attendance requirement of all the subjects (theory and practical
subjects).

6.3 After satisfying 6.2, a candidate has to submit, in consultation with his project
supervisor, the title, objective and plan of action of his project work to the Departmental
Committee for its approval. Only after obtaining the approval of Departmental Committee the student can initiate the Project work.

6.4 If a candidate wishes to change his supervisor or topic of the project he can do so with the approval of Departmental Committee. However, the Departmental Committee shall examine whether the change of topic/supervisor leads to a major change of his initial plans of project proposal. If so, his date of registration for the project work starts from the date of change of Supervisor or topic as the case may be.

6.5 A candidate shall submit status report (in a bound-form) in two stages at least with a gap of 3 months between them.

6.6 The work on the project shall be initiated in the beginning of the second year and the duration of the project is for two semesters. A candidate is permitted to submit project thesis only after successful completion of theory and practical course with the approval of PRC not earlier than 40 weeks from the date of registration of the project work. For the approval of PRC the candidate shall submit the draft copy of thesis to the Principal (through Head of the Department) and shall make an oral presentation before the PRC.

6.7 Three copies of the Project Thesis certified by the supervisor shall be submitted to the College/School/Institute.

6.8 The thesis shall be adjudicated by one examiner selected by the Institution. For this, Chairmen, BOS of the respective departments shall submit a panel of 5 examiners, who are eminent in that field with the help of the concerned guide and senior faculty of the department.

6.9 If the report of the examiner is not favourable, the candidate shall revise and resubmit the thesis, in the time frame as prescribed by PRC. If the report of the examiner is unfavourable again the thesis shall be summarily rejected.

6.10 If the report of the examiner is favourable, viva-voce examination shall be conducted by a board consisting of the supervisor, Head of the Department and the examiner who adjudicated the Thesis.

The Board shall jointly report candidates work as:

A. EXCELLENT
B. GOOD
C. SATISFACTORY
D. UNSATISFACTORY

Head of the Department shall coordinate and make arrangements for the conduct of viva-voce examination. If the report of the viva-voce is unsatisfactory, the candidate will retake the viva-voce examination after three months. If he fails to get a satisfactory report at the second viva-voce examination, he will not be eligible for the award of the degree.
7.0 AWARD OF DEGREE AND CLASS

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of M.Tech Degree, he shall be placed in one of the following four classes.

<table>
<thead>
<tr>
<th>Classes Awarded</th>
<th>% of marks to be secured</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
</tr>
</tbody>
</table>

(The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

8.0 WITH-HOLDING OF RESULTS:

If the candidate has not paid any dues to the institution or if any case of in-discipline is pending against him, the result of the candidate will be withheld and he will not be allowed into next higher semester. The issue of the degree is liable to be withheld in such cases.

9.0 TRANSITORY REGULATIONS:

Candidate who have discontinued or have been detained for want of attendance or who have failed after having undergone the course are eligible for admission to the same or equivalent subjects as and when subjects are offered, subject to 5.5 and 2.0

10.0 GENERAL:

10.1 The academic regulations should be read as a whole for purpose of any interpretation.
10.2 In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Academic Council is final.
10.3 The institution may change or amend the academic regulations and syllabus at any time and the changes and amendments made shall be applicable to all the students with effect from the date notified by the institution.
10.4 Wherever the word he, him or his occur, it will also include she, her and hers. There shall be no transfers within the constituent colleges of Jawaharlal Nehru Technological University.
MALPRACTICES RULES

DISCIPLINARY ACTION FOR IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses of keeps accessible in examination hall, any paper, note book, programmable calculators, cell phones, pager, palm, computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The hall ticket of the candidate is to be cancelled and sent to the controller of examinations, AGI.</td>
</tr>
<tr>
<td>3. Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practical's and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>4. Smuggles in the Answer book or</td>
<td>Expulsion from the examination hall and</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5.</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6.</td>
<td>Refuses to obey the orders of the Chief Superintendent/Assistant-Superintendent/any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any office relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the college campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8.</td>
<td>Posses any lethal weapon or firearm in the examination hall.</td>
</tr>
</tbody>
</table>
| 9. | **If student of the college, who is not a candidate for the particular examination or any person not connected with college indulges in any malpractice or improper conduct mentioned in clause 6 to 8** | **Student of the college’s expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.**

Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them. |
10.	**Comes in a drunken condition to the examination hall.**	**Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.**
11.	**Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.**	**Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of the semester/year examinations.**
12.	**If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the Malpractices committee, AGI for further action to award suitable punishment.**	
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science)

ADVANCED DATA STRUCTURES AND ALGORITHMS

Objectives:
- The fundamental design, analysis, and implementation of basic data structures.
- Basic concepts in the specification and analysis of programs.
- Principles for good program design, especially the uses of data abstraction.
- Significance of algorithms in the computer field.
- Various aspects of algorithm development.
- Qualities of a good solution.

UNIT I
Algorithms, Performance analysis- time complexity and space complexity, Asymptotic Notation-Big Oh, Omega and Theta notations, Complexity Analysis Examples.
Data structures-Linear and non linear data structures, ADT concept, Linear List ADT, Array representation, Linked representation, Vector representation, singly linked lists-insertion, deletion, search operations, doubly linked lists-insertion, deletion operations, circular lists. Representation of single, two dimensional arrays, Sparse matrices and their representation.

UNIT II
Stack and Queue ADTs, array and linked list representations, infix to postfix conversion using stack, implementation of recursion, Circular queue-insertion and deletion, Deque ADT, array and linked list representations, Priority queue ADT, implementation using Heaps, Insertion into a Max Heap, Deletion from a Max Heap, java.util package-ArrayList, Linked List, Vector classes, Stacks and Queues in java.util, iterators in java.util.

UNIT III
Sorting-Bubble sort, Insertion sort, Quick sort, Merge sort, Heap sort, Radix sort, comparison of sorting methods.

UNIT IV
Trees- Ordinary and Binary trees terminology, Properties of Binary trees, Binary tree ADT, representations, recursive and non recursive traversals, Java code for traversals, Threaded binary trees.
Graphs- Graphs terminology, Graph ADT, representations, graph traversals/search methods-dfs and bfs, Java code for graph traversals, Applications of Graphs-Minimum cost spanning tree using Kruskal’s algorithm, Dijkstra’s algorithm for Single Source Shortest Path Problem.

UNIT V
Search trees- Binary search tree-Binary search tree ADT, insertion, deletion and searching operations, Balanced search trees, AVL trees-Definition and examples only, Red Black trees- Definition and examples only, B-Trees-definition, insertion and searching operations, Trees in java.util- TreeSet, Tree Map Classes, Tries(examples only), Comparison of Search trees.
Text compression-Huffman coding and decoding, Pattern matching-KMP algorithm.

TEXT BOOKS:
1. Data structures, Algorithms and Applications in Java, S.Sahni, Universities Press.

REFERENCE BOOKS:
1. Java for Programmers, Deitel and Deitel, Pearson education.
6. Classic Data structures in Java, T.Budd, Addison-Wesley (Pearson Education).
7. Data structures with Java, Ford and Topp, Pearson Education.
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science)

COMPUTER SYSTEM DESIGN

Objectives:
- To apply the fundamentals of Computer Systems Design and IT in devising IT solutions.
- To design, simulate, and analyze digital hardware.
- To interface between basic hardware and software computing systems.
- To simulate and evaluate different computing architectures.

UNIT I
Computer structure – hardware, software, system software, Von-Neumann architecture – case study,IA -32 Pentium: registers and addressing, instructions, assembly language, program flow control, logic and shift/rotate instructions, multiply, divide MMX, SIMD instructions, I/O operations, subroutines.
Input/output organization, interrupts, DMA, Buses, Interface circuits, I/O interfaces, device drivers in windows, interrupt handlers

UNIT II
Processing Unit: Execution of a complete instruction, multiple bus organization, hardwired control, micro programmed control.
Pipelineing: data hazards, instruction hazards, influence on instruction sets, data path & control consideration, and RISC architecture introduction.

UNIT – III
Memory: types and hierarchy, model level organization, cache memory, performance considerations, mapping, virtual memory, swapping, paging, segmentation, replacement policies.

UNIT – IV
Processes and Threads: processes, threads, inter process communication, classical IPC problems, Deadlocks.

UNIT – V
File system: Files, directories, implementation, Unix file system
Security: Threats, intruders, accident data loss, basics of cryptography, user authentication.

TEXT BOOKS:

REFERENCE BOOKS:
ADVANCED OPERATING SYSTEMS

Objectives:
- To understand main components of Real time Operating system and their working
- To study the operations performed by OS as a resource manager
- To understand the scheduling policies of DOS
- To implement the working principles of OS
- To study different OS and compare their features

UNIT I:
Real-time operating systems: Design issues, principles and case study.

UNIT II:
Distributed operating system: Design issues, features and principles of working, case study.

UNIT III:
Network operating system: Design issues, working principles and characteristic features, case study.

UNIT IV:
Kernel development: Issues and development principles, case study.

UNIT V:
Protection, privacy, access control and security issues, solutions.

TEXT BOOKS:

REFERENCE BOOKS:
6. The UNIX Programming Environment - Kernighan & Pike, PE.
M. TECH, COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science)

SOFTWARE PROCESS AND PROJECT MANAGEMENT

Objectives:
- Describe the purpose and importance of project management from the perspectives of planning, tracking and completion of project.
- Compare and differentiate organization structures and project structures.
- Implement a project to manage project schedule, expenses and resources with the application of suitable project management tools.

UNIT I
Process Reference Models: Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP.

UNIT II
Life-Cycle Phases and Process artifacts: Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase, artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model based software architectures.

UNIT III
Workflows and Checkpoints of process: Software process workflows, iteration workflows, Major milestones, Minor milestones, Periodic status assessments.
Process Planning: Work breakdown structures, Planning guidelines, cost and schedule estimating process, iteration planning process, Pragmatic planning.

UNIT IV
Project Organizations: Line-of- business organizations, project organizations, evolution of organizations, process automation.
Project Control and process instrumentation: The seven core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic software metrics, and metrics automation.

UNIT V

TEXT BOOKS:

REFERENCE BOOKS:
6. Head First PMP, Jennifer Greene & Andrew Stellman, O'Reilly, 2007
8. The Art of Project Management, Scott Berkun, SPD, O'Reilly, 2011.
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science)

DISTRIBUTED SYSTEMS
(ELECTIVE-I)

Objectives:
- To explain what a distributed system is, why you would design a system as a distributed system, and what the desired properties of such systems are;
- To list the principles underlying the functioning of distributed systems, describe the problems and challenges associated with these principles, and evaluate the effectiveness and shortcomings of their solutions;
- To recognize how the principles are applied in contemporary distributed systems, explain how they affect the software design, and be able to identify features and design decisions that may cause problems;
- To design a distributed system that fulfills requirements with regards to key distributed systems properties (such as scalability, transparency, etc.), be able to recognize when this is not possible, and explain why;
- To build distributed system software using basic OS mechanisms as well as higher-level middleware and languages.

UNIT I
Distributed objects and Remote Invocation-Introduction, Communication between distributed objects, RPC, Events and notifications, Case study- Java RMI.

UNIT II
Name Services-Introduction, Name Services and the Domain Name System, Case study of the Global Name Service, Case study of the X.500 Directory Service.

UNIT III
Peer to Peer Systems-Introduction, Napster and its legacy, Peer to Peer middleware, Routing overlays, Overlay case studies- Pastry, Tapestry, Application case studies- Squirrel, OceanStore.
Time and Global States-Introduction, Clocks, events and Process states, Synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging.
Coordination and Agreement - Introduction, Distributed mutual exclusion, Elections, Multicast communication, consensus and related problems.

UNIT IV
Transactions and Concurrency control - Introduction, Transactions, Nested Transactions, Locks, Optimistic concurrency control, Timestamp ordering, Comparison of methods for concurrency controls, Distributed Transactions - Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery, Replication-Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data.

UNIT V
Security - Introduction, Overview of Security techniques, Cryptographic algorithms, Digital signatures, Case studies-Kerberos, TLS, 802.11 WiFi.
Distributed shared memory, Design and Implementation issues, Sequential consistency and Ivy case study, Release consistency and Mutin case study, other consistency models, CORBA case study-Introduction, CORBA RMI, CORBA Services.

TEXT BOOKS:

REFERENCE BOOKS:

M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science)

NATURAL LANGUAGE PROCESSING
(ELECTIVE-I)

Objectives:
- To acquire basic understanding of linguistic concepts and natural language complexity, variability.
- To acquire basic understanding of machine learning techniques as applied to language.
- To implement N-grams Models.

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
TEXT BOOKS:

1. "Speech and Language Processing": Jurafsky and Martin, Prentice Hall
2. "Statistical Natural Language Processing": Manning and Schütze, MIT Press

REFERENCES BOOKS:

4. Lutz and Ascher - "Learning Python", O'Reilly
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science)

PATTERN RECOGNITION
(ELECTIVE – I)

Objectives:
• To implement pattern recognition and machine learning theories
• To design and implement certain important pattern recognition techniques
• To apply the pattern recognition theories to applications of interest
• To implement the entropy minimization, clustering transformation and feature ordering

UNIT I
INTRODUCTION - Basic concepts, Applications, Fundamental problems in pattern Recognition system design, Design concepts and methodologies, Examples of Automatic Pattern recognition systems, Simple pattern recognition model
DECISION AND DISTANCE FUNCTIONS - Linear and generalized decision functions, Pattern space and weight space, Geometrical properties, implementations of decision functions, Minimum-distance pattern classifications.

UNIT II
PROBABILITY - Probability of events: Random variables, Joint distributions and densities, Movements of random variables, Estimation of parameter from samples. STATISTICAL DECISION MAKING - Introduction, Baye’s theorem, Multiple features, Conditionally independent features, Decision boundaries, Unequal cost of error, estimation of error rates, the leaving-one-out-techniques, characteristic curves, estimating the composition of populations. Baye’s classifier for normal patterns.

UNIT III
NON PARAMETRIC DECISION MAKING - Introduction, histogram, kernel and window estimation, nearest neighbour classification techniques. Adaptive decision boundaries, adaptive discriminate functions, Minimum squared error discriminate functions, choosing a decision making techniques.
CLUSTERING AND PARTITIONING - Hierarchical Clustering; Introduction, agglomerative clustering algorithm, the single-linkage, complete-linkage and average-linkage algorithm. Ward’s method Partition clustering-Forg’s algorithm, K-means’s algorithm, Isodata algorithm.

UNIT IV
PATTERN PREPROCESSING AND FEATURE SELECTION:
Introduction, distance measures, clustering transformation and feature ordering, clustering in feature selection through entropy minimization, features selection through orthogonal expansion, binary feature selection.

UNIT V
SYNTACTIC PATTERN RECOGNITION & APPLICATION OF PATTERN RECOGNITION
Introduction, concepts from formal language theory, formulation of syntactic pattern recognition problem, syntactic pattern description, recognition grammars, automata as pattern recognizers, Application of pattern recognition techniques in bio-metric, facial recognition, IRIS scan, Finger prints, etc.

TEXT BOOKS:

REFERENCE BOOK:
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech -- I Year -- I Sem. (Computer Science)

MACHINE LEARNING
(ELECTIVE -II)

Objectives:
To be able to formulate machine learning problems corresponding to different applications.
To understand a range of machine learning algorithms along with their strengths and weaknesses.
To understand the basic theory underlying machine learning.
To be able to apply machine learning algorithms to solve problems of moderate complexity.
To be able to read current research papers and understands the issues raised by current research.

UNIT I
INTRODUCTION - Well-posed learning problems, Designing a learning system, Perspectives and issues in machine learning
Concept learning and the general to specific ordering - Introduction, A concept learning task
Concept learning as search, Find-S: finding a maximally specific hypothesis, Version spaces and the candidate elimination algorithm, Remarks on version spaces and candidate elimination, Inductive bias

UNIT II
Decision Tree learning - Introduction, Decision tree representation, Appropriate problems for decision tree learning, The basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning
Artificial Neural Networks - Introduction, Neural network representation, Appropriate problems for neural network learning, Perceptions, Multi-layer networks and the back propagation algorithm, Remarks on the back propagation algorithm, An illustrative example face recognition
Advanced topics in artificial neural networks
Evaluation Hypotheses - Motivation, Estimation hypothesis accuracy, Basics of sampling theory, A general approach for deriving confidence intervals, Difference in error of two hypotheses, Comparing learning algorithms

UNIT III
Bayesian learning - Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum likelihood and least squared error hypotheses, Maximum likelihood hypotheses for predicting probabilities, Minimum description length principle, Bayes optimal classifier, Gibbs algorithm, Naive Bayes classifier, An example learning to classify text, Bayesian belief networks The EM algorithm
Computational learning theory - Introduction, Probability learning an approximately correct hypothesis, Sample complexity for finite Hypothesis Space, Sample Complexity for infinite Hypothesis Spaces, The mistake bound model of learning - Instance-Based Learning- Introduction, k-Nearest Neighbour Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager Learning

UNIT IV
Analytical Learning - Introduction, Learning with Perfect Domain Theories: Prolog-ERG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search Control Knowledge

UNIT V
Combining Inductive and Analytical Learning - Motivation, inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operators,
Reinforcement Learning - Introduction, The Learning Task, Q Learning, Non-Deterministic, Rewards and Actions, Temporal Difference Learning, Generalizing from Examples, Relationship to Dynamic Programming
M. TECH. COMPUTER SCIENCE-R13 Regulations

TEXT BOOKS:

1. Machine Learning – Tom M. Mitchell, - MGH

REFERENCE BOOKS:

3. Chris Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science)

PARALLEL AND DISTRIBUTED ALGORITHMS
(ELECTIVE – II)

Objectives:
- To learn parallel and distributed algorithms development techniques for shared memory and message passing models.
- To study the main classes of parallel algorithms.
- To study the complexity and correctness models for parallel algorithms.

UNIT-I
Basic Techniques, Parallel Computers for increase Computation speed, Parallel & Cluster Computing

UNIT-II
Message Passing Technique- Evaluating Parallel programs and debugging, Portioning and Divide and Conquer strategies examples

UNIT-III
Pipelining- Techniques computing platform, pipeline programs examples

UNIT-IV
Synchronous Computations, load balancing, distributed termination examples, programming with shared memory, shared memory multiprocessor constructs for specifying parallelism sharing data parallel programming languages and constructs, open MP

UNIT-V
Distributed shared memory systems and programming achieving constant memory distributed shared memory programming primitives, algorithms - sorting and numerical algorithms.

TEXT BOOK:

REFERENCE BOOK:
1. Introduction to Parallel algorithms by Jaja from Pearson, 1992.
SOFTWARE ARCHITECTURE AND DESIGN PATTERNS
(ELECTIVE -II)

Objectives:
After completing this course, the student should be able to:
- To understand the concept of patterns and the Catalog.
- To discuss the Presentation tier design patterns and their affect on: sessions, client access, validation and consistency.
- To understand the variety of implemented bad practices related to the Business and Integration tiers.
- To highlight the evolution of patterns.
- To how to add functionality to designs while minimizing complexity.
- To understand what design patterns really are, and are not.
- To learn about specific design patterns.
- To learn how to use design patterns to keep code quality high without overdesign.

UNIT I
Envisioning Architecture

Creating an Architecture
Quality Attributes, Achieving qualities, Architectural styles and patterns, designing the Architecture, Documenting software architectures, Reconstructing Software Architecture.

UNIT II
Analyzing Architectures
Architecture Evaluation, Architecture design decision making, ATAM, CBAM.

Moving from one system to many
Software Product Lines, Building systems from off the shelf components, Software architecture in future.

UNIT III
Patterns
Pattern Description, Organizing catalogs, role in solving design problems, Selection and usage.

Creationell and Structural patterns
Abstract factory, builder, factory method, prototype, singleton, adapter, bridge, composite, façade, flyweight.

UNIT IV
Behavioral patterns
Chain of responsibility, command, interpreter, iterator, mediator, memento, observer, state, strategy, template method, visitor.

UNIT V
Case Studies

TEXT BOOKS:

REFERENCE BOOKS:
ADVANCED DATA STRUCTURES AND ALGORITHMS LAB

Objectives:
- The fundamental design, analysis, and implementation of basic data structures.
- Basic concepts in the specification and analysis of programs.
- Principles for good program design, especially the uses of data abstraction.

Sample Problems on Data structures:

1. Write Java programs that use both recursive and non-recursive functions for implementing the following searching methods:
 a) Linear search
 b) Binary search

2. Write Java programs to implement the following using arrays and linked lists
 a) List ADT

3. Write Java programs to implement the following using an array.
 a) Stack ADT
 b) Queue ADT

4. Write a Java program that reads an infix expression and converts the expression to postfix form.
 (Use stack ADT).

5. Write a Java program to implement circular queue ADT using an array.

6. Write a Java program that uses both a stack and a queue to test whether the given string is a palindrome or not.

7. Write Java programs to implement the following using a singly linked list.
 a) Stack ADT
 b) Queue ADT

8. Write Java programs to implement the deque (double ended queue) ADT using
 a) Array
 b) Singly linked list
 c) Doubly linked list.

9. Write a Java program to implement priority queue ADT.

10. Write a Java program to perform the following operations:
 a) Construct a binary search tree of elements.
 b) Search for a key element in the above binary search tree.
 c) Delete an element from the above binary search tree.

11. Write a Java program to implement all the functions of a dictionary (ADT) using Hashing.

12. Write a Java program to implement Dijkstra’s algorithm for single source shortest path problem.

13. Write Java programs that use recursive and non-recursive functions to traverse the given binary tree in
 a) Preorder
 b) Inorder
 c) Postorder.

14. Write Java programs for the implementation of bfs and dfs for a given graph.

15. Write Java programs for implementing the following sorting methods:
 a) Bubble sort
 b) Insertion sort
 c) Quick sort
 d) Merge sort
 e) Heap sort
 f) Radix sort

16. Write a Java program to perform the following operations:
 a) Insertion into a B-tree
 b) Searching in a B-tree

17. Write a Java program that implements Kruskal’s algorithm to generate minimum cost spanning tree.

18. Write a Java program that implements KMP algorithm for pattern matching.

REFERENCE BOOKS:

2. Data Structures with Java, J.R.Hubbard, 2nd edition, Schuam’s Outlines, TMH.
7. Data Structures and Java collections framework, W.J.Collins, Mc Grav Hill.
 (Note: Use packages like java.io, java.util, etc)
ADVANCED NETWORK PROGRAMMING

Objectives:
Computer network programming involves writing computer programs that enable processes to communicate with each other across a computer network.

Network programming is client-server programming.
Interprocess communication, even if it is bidirectional, cannot be implemented in a perfectly symmetric way; to establish a communication channel between two processes, one process must take the initiative, while the other is waiting for it. Therefore, network programming unavoidably assumes a client-server model: The process initiating the communication is a client, and the process waiting for the communication to be initiated is a server. The client and server processes together form a distributed system. In a peer-to-peer communication, the program can act both as a client and a server.

UNIT I
Linux Utilities: File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking utilities, Finders, Text processing utilities and Backup utilities.

UNIT II
Files: File types, File System Structure, Inodes, File Attributes, file I/O in C using system calls, kernel support for files, file status information, stat family, file and record locking-lockf and fcntl functions, file permissions- chmod, fchmod, file ownership- chown, lchown, fchown, links- soft links and hard links -- symlink, link, unlink.

UNIT III
Signals: Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions.

UNIT IV
Shared Memory: Kernel support for shared memory, UNIX system V APIs for shared memory, client/server example.
Network IPC: Introduction to Unix Sockets, IPC over a network, Client-Server model.Address formats (Unix domain and Internet domain), System calls for Connection Oriented Communication, Socket system calls for Connectionless Communication, Example-Client/Server Programs: Single Server-Client connection, Multiple simultaneous clients, Socket options – setsockopt, getsockopt, fcntl.

UNIT V
Network Programming in Java: Network basics, TCP sockets, UDP sockets (data gram sockets), Server programs that can handle one connection at a time and multiple connections (using
multithreaded server), Remote Method Invocation (Java RMI)-Basic RMI Process, Implementation details-Client-Server Application.

TEXT BOOKS:

1. Unix System Programming using C++, T.Chan, PHI.(Units II,III,IV)
3. An Introduction to Network Programming with Java, Jen Gaba, Springer, rp 2010.(Unit V)
4. Unix Network Programming, W.R. Stevens, PHI.(Units II,III,IV)

REFERENCE BOOKS:

1. Linux System Programming, Robert Love, O'Reilly, SPD.
8. C Programming Language, Kernighan and Ritchie, PHI
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – II Sem. (Computer Science)

ADVANCED DATABASES

Objectives:
By the end of the course, you will know:
- History and Structure of databases
- How to design a database
- How to convert the design into the appropriate tables
- Handling Keys appropriately
- Enforcing Integrity Constraints to keep the database consistent
- Normalizing the tables to eliminate redundancies
- Querying relational data
- Optimizing and processing the queries
- Storage Strategies for easy retrieval of data through index
- Triggers, Procedures and Cursors, Transaction Management
- Distributed databases, management system concepts and implementation

UNIT I
Database System Applications, Purpose of Database Systems, View of Data – Data Abstraction, Instances and Schemas, Data Models – the ER Model, Relational Model, Other Models – Database Languages – DDL, DML, Database Access from Applications Programs, Transaction Management, Data Storage and Querying, Database Architecture, Database Users and Administrators, ER diagrams, Relational Model: Introduction to the Relational Model – Integrity Constraints Over Relations, Enforcing Integrity constraints, Querying relational data, Logical data base Design, Introduction to Views – Altering Tables and Views, Relational Algebra, Basic SQL Queries, Nested Queries, Complex Integrity Constraints in SQL, Triggers

UNIT II

UNIT III
Transaction Management: The ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions – Lock Based Concurrency Control, Deadlocks – Performance of Locking – Transaction Support in SQL.
Concurrency Control: Serializability, and recoverability – Introduction to Lock Management – Lock Conversions, Dealing with Deadlocks, Specialized Locking Techniques – Concurrency Control without Locking.
Crash recovery: Introduction to Crash recovery, Introduction to ARIES, the Log, and Other Recovery related Structures, the Write-Ahead Log Protocol, Check pointing, recovering from a System Crash, Media recovery

UNIT IV
Overview of Storage and Indexing: Data on External Storage, File Organization and Indexing – Clustered Indexes, Primary and Secondary Indexes, Index data Structures – Hash Based Indexing, Tree based Indexing
Tree Structured Indexing: Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM)
B+ Trees: A Dynamic Index Structure, Search, Insert, Delete.
Hash Based Indexing: Static Hashing, Extensible hashing, Linear Hashing, Extensible vs. Linear Hashing.

UNIT V
Distributed databases: Introduction to distributed databases, Distributed DBMS architectures, Storing data in a distributed DBMS, Distributed catalog management, Distributed query processing Updating distributed data, Distributed transactions, Distributed concurrency control, Distributed recovery
M. TECH. COMPUTER SCIENCE-R13 Regulations

TEXT BOOKS:

REFERENCE BOOKS:

1. Introduction to Database Systems, C.J.Date, Pearson Education.
2. Database Management System Oracle SQL and PL/SQL, P.K.Das Gupta, PHI.
9. Distributed Databases Principles & Systems, Stefano Ceri, Giuseppe Pelagatti, TMH.
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M. Tech – I Year – II Sem. (Computer Science)

WEB SERVICES AND SERVICE ORIENTED ARCHITECTURE

Objectives:
- To Understand Web Services and implementation model for SOA
- To Understand the SOA, its Principles and Benefits
- To Understand XML concepts
- To Understand paradigms needed for testing Web Services
- To explore different Test Strategies for SOA-based applications
- To Implement functional testing, compliance testing and load testing of Web Services
- To identify bug-finding ideas in testing Web Services

UNIT - I
Evolution and Emergence of Web Services – Evolution of distributed computing. Core distributed computing technologies – client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM. Challenges in Distributed Computing, role of J2EE and XML in distributed computing, emergence of Web Services and Service Oriented Architecture (SOA). Introduction to Web Services – The definition of web services, basic operational model of web services, tools and technologies enabling web services, benefits and challenges of using web services.

UNIT - II
Web Service Architecture – Web services Architecture and its characteristics, core building blocks of web services, standards and technologies available for implementing web services, web services communication, basic steps of implementing web services. Describing Web Services – WSDL introduction, non functional service description, WSDL1.1 Vs WSDL 2.0, WSDL document, WSDL elements, WSDL binding, WSDL tools, WSDL port type, limitations of WSDL.

UNIT III

UNIT - IV
Registering and Discovering Services: The role of service registries, Service discovery, Universal Description, Discovery, and Integration, UDDI Architecture, UDDI Data Model, Interfaces, UDDI Implementation, UDDI with WSDL, UDDI specification, Service Addressing and Notification, Referencing and addressing Web Services, Web Services Notification.

UNIT - V

TEXT BOOKS:
2. Developing Java Web Services, R. Nagappan, R. Skoczylas, R.P. Srlanesh, Wiley India.
3. Developing Enterprise Web Services, S. Chatterjee, J. Webber, Pearson Education.

REFERENCE BOOKS:
1. XML, Web Services, and the Data Revolution, F.P. Coyle, Pearson Education.
3. Java Web Services, D.A. Chappell & T. Jewell, O'Reilly, SPD.
Wireless Networks and Mobile Computing

Objectives:
The main objective of this course is to provide the students with the competences required for understanding and using the communications component of an universal communications environment. Students will be provided, in particular, with the knowledge required to understand:
- emerging communications networks,
- their computational demands,
- the classes of distributed services and applications enabled by these networks, and
- the computational means required to create the new networks and the new applications.

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
Mobile Transport Layer: Traditional TCP, Indirect TCP, Snooping TCP, Mobile TCP, Fast retransmit/fast recovery, Transmission time-out freezing, Selective retransmission, Transaction oriented TCP, TCP over 2.5G/3G Wireless Networks.

Text Books:

Reference Books:
2. Matthew S. Gast, "802.11 Wireless Networks", SPD O'REILLY.
ADVANCED DATA MINING
(ELECTIVE - III)

Objectives:
- To develop the abilities of critical analysis to data mining systems and applications.
- To implement practical and theoretical understanding of the technologies for data mining
- To understand the strengths and limitations of various data mining models;

UNIT-I
Data mining Overview and Advanced Pattern Mining: Data mining tasks – mining frequent patterns, associations and correlations, classification and regression for predictive analysis, cluster analysis, outlier analysis; advanced pattern mining in multilevel, multidimensional space – mining multilevel associations, mining multidimensional associations, mining quantitative association rules, mining rare patterns and negative patterns.

UNIT-II
Advance Classification: Classification by back propagation, support vector machines, classification using frequent patterns, other classification methods - genetic algorithms, roughest approach, fuzzy-set approach;

UNIT-III
Advance Clustering : Density - based methods –DBSCAN, OPTICS, DENCLUE; Grid-Based methods – STING, CLIQUE; Exception – maximization algorithm; clustering High-Dimensional Data; Clustering Graph and Network Data.

UNIT-IV
Web and Text Mining: Introduction, web mining, web content mining, web structure mining, web usage mining, Text mining – unstructured text, episode rule discovery for texts, hierarchy of categories, text clustering.

UNIT-V
Temporal and Spatial Data Mining : Introduction; Temporal Data Mining – Temporal Association Rules, Sequence Mining, GSP algorithm, SPADE, SPIRIT Episode Discovery, Time Series Analysis, Spatial Mining – Spatial Mining Tasks, Spatial Clustering. Data Mining Applications.

TEXT BOOKS:
1. Data Mining Concepts and Techniques, Jiawei Han Micheline Kamber, Jian pei, Morgan Kaufmann.
2. Data Mining Techniques – Arun K pujari, Universities Press.

REFERENCE BOOKS:
1. Introduction to Data Mining – Pang-Ning Tan, Vipin kumar, Michael Steinbach, Pearson.
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – II Sem. (Computer Science)

STORAGE AREA NETWORKS
(ELECTIVE-III)

Objectives:
- To understand Storage Area Networks characteristics and components.
- To become familiar with the SAN vendors and their products.
- To learn Fibre Channel protocols and how SAN components use them to communicate with each other.
- To become familiar with Cisco MDS 9000 Multilayer Directors and Fabric Switches.
- Thoroughly learn Cisco SAN-OS features.
- To understand the use of all SAN-OS commands. Practice variations of SANOS features.

UNIT I: Introduction to Storage Technology
Review data creation and the amount of data being created and understand the value of data to a business, challenges in data storage and data management. Solutions available for data storage. Core elements of a data center infrastructure, role of each element in supporting business activities.

UNIT II: Storage Systems Architecture
Hardware and software components of the host environment, Key protocols and concepts used by each component, Physical and logical components of a connectivity environment. Major physical components of a disk drive and their function, logical constructs of a physical disk, access characteristics, and performance implications. Concept of RAID and its components. Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6. Compare and contrast integrated and modular storage systems. High-level architecture and working of an intelligent storage system.

UNIT III: Introduction to Networked Storage
Evolution of networked storage, Architecture, components, and topologies of FC-SAN, NAS, and IP-SAN. Benefits of the different networked storage options, understand the need for long-term archiving solutions and describe how CAS fulfills the need, understand the appropriateness of the different networked storage options for different application environments.

UNIT IV: Information Availability & Monitoring & Managing Datacenter
List reasons for planned/unplanned outages and the impact of downtime. Impact of downtime. Differentiate between business continuity (BC) and disaster recovery (DR). RTO and RPO. Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures. Architecture of backup/recovery and the different backup/recovery topologies, replication technologies and their role in ensuring information availability and business continuity. Remote replication technologies and their role in providing disaster recovery and business continuity capabilities. Identify key areas to monitor in a data center, industry standards for data center monitoring and management. Key metrics to monitor for different components in a storage infrastructure, Key management tasks in a data center.

UNIT V: Securing Storage and Storage Virtualization
Information security, Critical security attributes for information systems, Storage security domains, List and analyzes the common threats in each domain, Virtualization technologies, block-level and file-level virtualization technologies and processes.
Case Studies
The technologies described in the course are reinforced with EMC examples of actual solutions. Realistic case studies enable the participant to design the most appropriate solution for given sets of criteria.

TEXT BOOK:
EMC Corporation, Information Storage and Management, Wiley.

REFERENCE BOOKS:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – II Sem. (Computer Science)

DATABASE SECURITY
(ELECTIVE-III)

Objectives:
- To learn the security of databases
- To learn the design techniques of database security
- To learn the secure software design

UNIT I
Introduction
Introduction to Databases Security Problems in Databases Security Controls Conclusions
Security Models -1
Introduction Access Matrix Model Take-Grant Model ACM Model PN Model Hartson and Hsiao's Model Fernandez's Model Bussolati and Martella's Model for Distributed databases

UNIT II
Security Models -2
Bell and LaPedula's Model Biba's Model Dion's Model Sea View Model Jajodia and Sandhu's Model The Lattice Model for the Flow Control conclusion.
Security Mechanisms

UNIT III
Security Software Design

UNIT IV
Statistical Database Protection & Intrusion Detection Systems
Introduction Statistics Concepts and Definitions Types of Attacks Inference Controls evaluation Criteria for Control Comparison Introduction IDES System RETISS System ASES System Discovery

UNIT V
Models For The Protection Of New Generation Database Systems -1
Introduction A Model for the Protection of Frame Based Systems A Model for the Protection of Object-Oriented Systems SORION Model for the Protection of Object-Oriented Databases
Models For The Protection Of New Generation Database Systems -2

TEXT BOOKS:

REFERENCE BOOK:
1. Database security by alfied basta, melissa zgola, CENGAGE learning.
SEMANTIC WEB AND SOCIAL NETWORKS
(ELECTIVE -IV)

Objectives:
- To learn Web Intelligence
- To learn Knowledge Representation for the Semantic Web
- To learn Ontology Engineering
- To learn Semantic Web Applications, Services and Technology
- To learn Social Network Analysis and semantic web

UNIT-I: Web Intelligence

UNIT-II: Knowledge Representation for the Semantic Web

UNIT-III: Ontology Engineering
Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping, Logic, Rule and Inference Engines.

UNIT-IV: Semantic Web Applications, Services and Technology

UNIT-V: Social Network Analysis and semantic web
What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks, Blogs and Online Communities, Web Based Networks, Building Semantic Web Applications with social network features.

TEXT BOOKS:

REFERENCE BOOKS:
4. Programming the Semantic Web, T.Segaran, C.Evans, J.Taylor, O'Reilly, SPD.
M. TECH, COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech - I Year - II Sem. (Computer Science)

CLOUD COMPUTING
(ELECTIVE-IV)

Prerequisite: Computer Networks and Operating Systems
Course Description:
Cloud computing has evolved as a very important computing model, which enables information, software, and shared resources to be provisioned over the network as services in an on-demand manner. This course provides an insight into what is cloud computing and the various services cloud is capable.

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V

TEXT BOOKS:

REFERENCE BOOKS:
4. Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, George Reese, O'Reilly, SPD, rp2011.
M. TECH. COMPUTER SCIENCE-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – II Sem. (Computer Science)

INFORMATION RETRIEVAL SYSTEMS
(ELECTIVE - IV)

Objectives:
On completion of this course you should have gained a good understanding of the foundation concepts of information retrieval techniques and be able to apply these concepts into practice. Specifically, you should be able to:
- To use different information retrieval techniques in various application areas
- To apply IR principles to locate relevant information large collections of data
- To analyze performance of retrieval systems when dealing with unmanaged data sources
- To implement retrieval systems for web search tasks.

UNIT I

UNIT II
Scoring, term weighting and the vector space model. Computing scores in a complete search system. Evaluation in information retrieval. Relevance feedback and query expansion.

UNIT III

UNIT IV
Support vector machines and machine learning on documents, Flat clustering, Hierarchical clustering, Matrix decompositions and latent semantic indexing.

UNIT V
Web search basics. Web crawling and indexes, Link analysis.

TEXT BOOK:
1. Introduction to Information Retrieval , Christopher D. Manning and Prabhakar Raghavan and Hinrich Schütze, Cambridge University Press, 2008.

REFERENCE BOOKS:
5. Information Storage & Retrieval, Robert Korfhage, John Wiley & Sons.
OBJECTIVES:

- To implement the technologies like WSDL, UDDI
- To learn how to implement and deploy web service client and server

LIST OF PROGRAMS:

1. Write a program to implement WSDL Service (Hello Service, WSDL File)
2. Write a program the service provider can be implemented a single get price(), static bind() and get
 product operation
3. Write a program to implement the operation can receive request and will return a response in
 two ways:
 a) One-Way operation
 b) Request - Response
4. Write a program to implement to create a simple web service that converts the temperature from
 Fahrenheit to Celsius (using HTTP Post Protocol)
5. Write a program to implement business UDDI Registry entry
6. Write a program to implement
 a) Web based service consumer
 b) Windows application based web service consumer