ACADEMIC REGULATIONS, COURSE STRUCTURE
AND DETAILED SYLLABUS

FOR
MASTER OF TECHNOLOGY TWO YEAR POST GRADUATE COURSE
(Applicable for the batches admitted from 2015-2016)

R15

ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)
Venkatapur, Ghatkesar, Hyderabad – 500 088
Applicable for the students of M. Tech. (Regular) programme from the Academic Year 2015-16 and onwards

The M. Tech. Degree of Jawaharlal Nehru Technological University Hyderabad shall be conferred on candidates who are admitted to the programme and who fulfill all the requirements for the award of the Degree.

1.0 **ELIGIBILITY FOR ADMISSIONS**

Admission to the above programme shall be made subject to eligibility, qualification and specialization as prescribed by the University from time to time.

Admissions shall be made on the basis of merit/rank obtained by the candidates at the qualifying Entrance Test conducted by the University or on the basis of any other order of merit as approved by the University, subject to reservations as laid down by the Govt. from time to time.

2.0 **AWARD OF M. Tech. DEGREE**

2.1 A student shall be declared eligible for the award of the M. Tech. Degree, if he pursues a course of study in not less than two and not more than four academic years, failing which he shall forfeit his seat in M. Tech. programme.

2.2 The student shall register for all 88 credits and secure all the 88 credits.

2.3 The minimum instruction days in each semester are 90.

3.0 **COURSES OF STUDY**

The following specializations are offered at present for the M. Tech. programme of study.

1. CAD/CAM
2. Computer Networks and Information Security
3. Computer Science
4. Computer Science and Engineering
5. Construction Management
6. Electrical Power Systems
7. Electronics and Communication Engineering
8. Embedded Systems
9. Machine Design
10. Power Electronics and Electrical Drives
11. Software Engineering
12. Structural Engineering
13. VLSI System Design
14. Wireless and Mobile Communication
4 Course Registration

4.1 A ‘Faculty Advisor or Counselor’ shall be assigned to each student, who will advise him on the Post Graduate Programme (PGP), its Course Structure and Curriculum, Choice/Option for Subjects/ Courses, based on his competence, progress, pre-requisites and interest.

4.2 Academic Section of the College invites ‘Registration Forms’ from students with in 15 days from the commencement of class work through ‘ON-LINE SUBMISSIONS’, ensuring ‘DATE and TIME Stamping’. The ON-LINE Registration Requests for any ‘CURRENT SEMESTER’ shall be completed BEFORE the commencement of SEE’s (Semester End Examinations) of the ‘PRECEDING SEMESTER’.

4.3 A Student can apply for ON-LINE Registration, ONLY AFTER obtaining the ‘WRITTEN APPROVAL’ from his Faculty Advisor, which should be submitted to the College Academic Section through the Head of Department (a copy of it being retained with Head of Department, Faculty Advisor and the Student).

4.4 If the Student submits ambiguous choices or multiple options or erroneous entries - during ON-LINE Registration for the Subject(s) / Course(s) under a given/specified Course Group/Category as listed in the Course Structure, only the first mentioned Subject/ Course in that Category will be taken into consideration.

4.5 Subject/ Course Options exercised through ON-LINE Registration are final and CANNOT be changed, nor can they be inter-changed; further, alternate choices will also not be considered. However, if the Subject/ Course that has already been listed for Registration (by the Head of Department) in a Semester could not be offered due to any unforeseen or unexpected reasons, then the Student shall be allowed to have alternate choice - either for a new Subject (subject to offering of such a Subject), or for another existing Subject (subject to availability of seats), which may be considered. Such alternate arrangements will be made by the Head of Department, with due notification and time-framed schedule, within the FIRST WEEK from the commencement of Class-work for that Semester.

5 ATTENDANCE

The programmes are offered on a unit basis with each subject being considered a unit.

5.1 Attendance in all classes (Lectures/Laboratories etc.) is compulsory. The minimum required attendance in each theory / Laboratory etc. is 75% including the days of attendance in sports, games, NCC and NSS activities for appearing for the End Semester examination. A student shall not be permitted to appear for the Semester End Examinations (SEE) if attendance is less than 75%.

5.2 Condonation of shortage of attendance in each subject up to 10% (65% and above and below 75%) in each semester shall be granted by the College Academic Committee on genuine medical grounds and valid reasons on representation by the candidate with supporting evidence.
5.3 Shortage of Attendance below 65% in each subject shall not be condoned.

5.4 Students whose shortage of attendance is not condoned in any subject are not eligible to write their end semester examination of that subject and their registration shall stand cancelled.

5.5 A prescribed fees hall be payable towards condonation of shortage of attendance.

5.6 A candidate shall get minimum required attendance at least in three (3) theory subjects in the present semester to get promoted to the next semester. In order to qualify for the award of the M.Tech Degree, The candidate shall complete all the academic requirements of the subjects, as per the course structure.

5.7 A student shall not be promoted to the next semester unless he satisfies the attendance requirement of the present Semester, as applicable. They may seek readmission into that semester when offered next. If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission in to the same class.

6 EVALUATION

The performance of the candidate in each semester shall be evaluated subject-wise, with a maximum of 100 marks for theory and 100 marks for practicals, on the basis of Internal Evaluation and End Semester Examination.

6.1 For the theory subjects 60 marks shall be awarded for the performance in the Semester End Examination and 40 marks shall be awarded for Continuous Internal Evaluation (CIE). The Continuous Internal Evaluation shall be made based on the average of the marks secured in the two Mid Term-Examinations conducted, one in the middle of the Semester and the other, immediately after the completion of Semester instructions. Each mid-term examination shall be conducted for a total duration of 120 minutes with Part A as compulsory question (10 marks) consisting of 5 sub-questions carrying 2 marks each, and Part B to be answered 5 questions carrying 10 marks each. The details of the Question Paper pattern for End Examination (Theory) are given below:

- The Semester End Examination will be conducted for 60 marks. It consists of two parts. i). Part-A for 20 marks, ii). Part-B for 40 marks.
- Part-A is a compulsory question consisting of 5 questions, one from each unit and carries 4 marks each.
- Part-B to be answered 5 questions carrying 8 marks each. There will be two questions from each unit and only one should be answered.

6.2 For practical subjects, 60 marks shall be awarded for performance in the Semester End
Examinations and 40 marks shall be awarded for day-to-day performance as Internal Marks.

6.3 The practical end semester examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed by the Principal from the panel of examiners recommended by Chairman, Board of Studies in respective Branches.

6.4 There shall be two seminar presentations during I year I semester and II semester. For seminar, a student under the supervision of a faculty member, shall collect the literature on a topic and critically review the literature and submit it to the department in a report form and shall make an oral presentation before the Departmental Academic Committee consisting of Head of the Department, Supervisor and two other senior faculty members of the department. For each Seminar there will be only internal evaluation of 50 marks. A candidate has to secure a minimum of 50% of marks to be declared successful. If he fails to fulfill minimum marks, he has to reappear during the supplementary examinations.

6.5 There shall be a Comprehensive Viva-Voce in II year I Semester. The Comprehensive Viva-Voce is intended to assess the students’ understanding of various subjects he has studied during the M. Tech. course of study. The Head of the Department shall be associated with the conduct of the Comprehensive Viva-Voce through a Committee. The Committee consisting of Head of the Department, one senior faculty member and an external examiner. The external examiner shall be appointed by the Principal from the panel of 3 examiners recommended by Chairman, Board of Studies in respective Branches. There are no internal marks for the Comprehensive Viva-Voce and evaluates for maximum of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful. If he fails to fulfill minimum marks, he has to reappear during the supplementary examinations.

6.6 A candidate shall be deemed to have secured the minimum academic requirement in a subject if he secures a minimum of 40% of marks in the Semester End Examination and a minimum aggregate of 50% of the total marks in the Semester End Examination and Continuous Internal Evaluation taken together.

6.7 In case the candidate does not secure the minimum academic requirement in any subject (as specified in 6.6) he has to reappear for the Semester End Examination in that subject.

6.8 A candidate shall be given one chance to re-register for the subjects if the internal marks secured by a candidate is less than 50% and failed in that subject for maximum of two subjects and should register within four weeks of commencement of the class work. In such a case, the candidate must re-register for the subjects and secure the required minimum attendance. The candidate’s attendance in the re-registered subject(s) shall be calculated separately to decide upon his eligibility for writing the Semester End Examination in those subjects. In the event of the student taking another chance, his Continuous Internal Evaluation (internal) marks and Semester End Examination marks obtained in the previous attempt stands cancelled.

6.9 In case the candidate secures less than the required attendance in any subject, he shall not be permitted to write the Semester End Examination in that subject. He shall re-register for the subject when next offered.
7 Examinations and Assessment - The Grading System

7.1 Marks will be awarded to indicate the performance of each student in each Theory Subject, or Lab/Practicals, or Seminar, or Project, etc., based on the % marks obtained in CIE + SEE (Continuous Internal Evaluation + Semester End Examination, both taken together) as specified in Item 6 above, and a corresponding Letter Grade shall be given.

7.2 As a measure of the student’s performance, a 10-point Absolute Grading System using the following Letter Grades (UGC Guidelines) and corresponding percentage of marks shall be followed:

<table>
<thead>
<tr>
<th>% of Marks Secured (Class Intervals)</th>
<th>Letter Grade (UGC Guidelines)</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% and above</td>
<td>O (Outstanding)</td>
<td>10</td>
</tr>
<tr>
<td>(≥ 80%, ≤ 100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 80% but not less than 70%</td>
<td>A+ (Excellent)</td>
<td>9</td>
</tr>
<tr>
<td>(≥ 70%, < 80%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 70% but not less than 60%</td>
<td>A (Very Good)</td>
<td>8</td>
</tr>
<tr>
<td>(≥ 60%, < 70%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 60% but not less than 55%</td>
<td>B+ (Good)</td>
<td>7</td>
</tr>
<tr>
<td>(≥ 55%, < 60%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 55% but not less than 50%</td>
<td>B (Above Average)</td>
<td>6</td>
</tr>
<tr>
<td>(≥ 50%, < 55%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 50%</td>
<td>F (Fail)</td>
<td>0</td>
</tr>
<tr>
<td>(< 50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>0</td>
</tr>
</tbody>
</table>

7.3 A student obtaining F Grade in any Subject shall be considered ‘failed’ and is be required to reappear as ‘Supplementary Candidate’ in the Semester End Examination (SEE), as and when offered. In such cases, his Internal Marks (CIE Marks) in those Subjects will remain the same as those he obtained earlier.

7.4 A student not appeared for examination then ‘Ab’ Grade will be allocated in any Subject shall be considered ‘failed’ and will be required to reappear as ‘Supplementary Candidate’ in the Semester End Examination (SEE), as and when offered.

7.5 A Letter Grade does not imply any specific Marks percentage and it will be the range of marks percentage.
7.6 In general, a student shall not be permitted to repeat any Subject/ Course (s) only for the sake of ‘Grade Improvement’ or ‘SGPA/ CGPA Improvement’.

7.7 A student earns Grade Point (GP) in each Subject/ Course, on the basis of the Letter Grade obtained by him in that Subject/ Course. The corresponding ‘Credit Points’ (CP) are computed by multiplying the Grade Point with Credits for that particular Subject/ Course.

\[\text{Credit Points (CP)} = \text{Grade Point (GP)} \times \text{Credits} \quad \text{.... For a Course} \]

7.8 The Student passes the Subject/ Course only when he gets \(GP \geq 6 \) (B Grade or above).

7.9 The Semester Grade Point Average (SGPA) is calculated by dividing the Sum of Credit Points (\(\Sigma CP \)) secured from ALL Subjects/ Courses registered in a Semester, by the Total Number of Credits registered during that Semester. SGPA is rounded off to TWO Decimal Places. SGPA is thus computed as

\[\text{SGPA} = \left(\frac{\sum_{i=1}^{N} C_i G_i}{\sum_{i=1}^{N} C_i} \right) \text{ For each Semester,} \]

where ‘\(i \)’ is the Subject indicator index (takes into account all Subjects in a Semester), ‘\(N \)’ is the no. of Subjects ‘REGISTERED’ for the Semester (as specifically required and listed under the Course Structure of the parent Department), C is the no. of Credits allotted to the \(i \)th Subject, and G represents the Grade Points (GP) corresponding to the Letter Grade awarded for that \(i \)th Subject.

7.10 The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student over all Semesters considered for registration. The CGPA is the ratio of the Total Credit Points secured by a student in ALL registered Courses in ALL Semesters, and the Total Number of Credits registered in ALL the Semesters. CGPA is rounded off to TWO Decimal Places. CGPA is thus computed from the I Year Second Semester onwards, at the end of each Semester, as per the formula

\[\text{CGPA} = \left(\frac{\sum_{j=1}^{M} C_j G_j}{\sum_{j=1}^{M} C_j} \right) \text{ ... for all S Semesters registered} \]

(\(\text{ie., upto and inclusive of S Semesters, } S \geq 2 \)).

where ‘\(M \)’ is the TOTAL no. of Subjects (as specifically required and listed under the Course Structure of the parent Department) the Student has ‘REGISTERED’ from the 1st Semester onwards upto and inclusive of the Semester \(S \) (obviously \(M > N \)), ‘\(j \)’ is the Subject indicator index (takes into account all Subjects from 1 to \(S \) Semesters), C is the no. of Credits allotted to the \(j \)th Subject, and G represents the Grade Points (GP) corresponding to the Letter Grade awarded for that \(j \)th Subject. After registration and completion of I Year I Semester however, the SGPA of that Semester itself may be taken as the CGPA, as there are no cumulative effects.

7.11 For Calculations listed in Item 7.6 – 7.10, performance in failed Subjects/ Courses
(securing F Grade) will also be taken into account, and the Credits of such Subjects/ Courses will also be included in the multiplications and summations.

8. **EVALUATION OF PROJECT/DISSERTATION WORK**

Every candidate shall be required to submit a thesis or dissertation on a topic approved by the Project Review Committee.

8.1 A Project Review Committee (PRC) shall be constituted with Head of the Department as Chairperson, Project Supervisor and one senior faculty member of the Departments offering the M. Tech. programme.

8.2 Registration of Project Work: A candidate is permitted to register for the project work after satisfying the attendance requirement of all the subjects, both theory and practical.

8.3 After satisfying 8.2, a candidate has to submit, in consultation with his Project Supervisor, the title, objective and plan of action of his project work to the PRC for approval. Only after obtaining the approval of the PRC the student can initiate the Project work.

8.4 If a candidate wishes to change his supervisor or topic of the project, he can do so with the approval of the PRC. However, the PRC shall examine whether or not the change of topic/supervisor leads to a major change of his initial plans of project proposal. If yes, his date of registration for the project work starts from the date of change of Supervisor or topic as the case may be.

8.5 A candidate shall submit his project status report in two stages at least with a gap of 3 months between them.

8.6 The work on the project shall be initiated at the beginning of the II year and the duration of the project is two semesters. A candidate is permitted to submit Project Thesis only after successful completion of all theory and practical courses with the approval of PRC not earlier than 40 weeks from the date of registration of the project work. For the approval of PRC the candidate shall submit the draft copy of thesis to the Head of the Department and make an oral presentation before the PRC.

8.7 Three copies of the Project Thesis certified by the supervisor shall be submitted to the College/School/Institute.

8.8 For Project work **Review I** in II Year I Sem. there is an internal marks of 50, the evaluation should be done by the PRC for 25 marks and Supervisor will evaluate for 25 marks. The Supervisor and PRC will examine the Problem Definition, Objectives, Scope of Work, Literature Survey in the same domain. A candidate has to secure a minimum of 50% of marks to be declared successful for Project Work Review I. If he fails to fulfill minimum marks, he has to reappear as per the recommendations of PRC.

8.9 For Project work **Review II** in II Year II Sem. there is an internal marks of 50, the evaluation should be done by the PRC for 25 marks and Supervisor will evaluate for 25 marks. The PRC will examine the overall progress of the Project Work and
decide the Project is eligible for final submission or not. A candidate has to secure a minimum of 50% of marks to be declared successful for Project Work Review II. If he fails to fulfill minimum marks, he has to reappear as per the recommendations of PRC.

8.10 For Project Evaluation (Viva Voce) in II Year II Sem. there is an external marks of 150 and the same evaluated by the External examiner appointed by the Institution. The candidate has to secure minimum of 50% marks in Project Evaluation (Viva-Voce) examination.

8.11 If he fails to fulfill as specified in 8.10, he will reappear for the Viva-Voce examination only after three months. In the reappeared examination also, fails to fulfill, he will not be eligible for the award of the degree.

8.12 The thesis shall be adjudicated by one examiner selected by the Institution. For this, Chairmen, BOS of the respective departments shall submit a panel of 3 examiners, who are eminent in that field with the help of the concerned guide and senior faculty of the department.

8.13 If the report of the examiner is not favourable, the candidate shall revise and resubmit the Thesis. If the report of the examiner is un favourable again, the thesis shall be summarily rejected.

8.14 If the report of the examiner is favourable, Project Viva-Voce examination shall be conducted by a board consisting of the Supervisor, Head of the Department and the external examiner who adjudicated the Thesis.

8.15 The Head of the Department shall coordinate and make arrangements for the conduct of Project Viva-Voce examination.

9. **AWARD OF DEGREE AND CLASS**

9.1 A Student who registers for all the specified Subjects/ Courses as listed in the Course Structure, satisfies all the Course Requirements, and passes the examinations prescribed in the entire PG Programme (PGP), and secures the required number of 88 Credits (with CGPA ≥ 6.0), shall be declared to have ‘QUALIFIED’ for the award of the M.Tech. Degree in the chosen Branch of Engineering and Technology with specialization as he admitted.

9.2 **Award of Class**

After a student has satisfied the requirements prescribed for the completion of the programme and is eligible for the award of M. Tech. Degree, he shall be placed in one of the following three classes based on the CGPA:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>≥ 7.75</td>
</tr>
<tr>
<td>First Class</td>
<td>6.75 ≤ CGPA < 7.75</td>
</tr>
<tr>
<td>Second Class</td>
<td>6.00 ≤ CGPA < 6.75</td>
</tr>
</tbody>
</table>

9.3 A student with final CGPA (at the end of the PGP) < 6.00 will not be eligible for
the Award of Degree.

10. **WITHHOLDING OF RESULTS**

If the student has not paid the dues, if any, to the institution or if any case of indiscipline is pending against him, the result of the student will be withheld and he will not be allowed into the next semester. His degree will be withheld in such cases.

11. **TRANSITORY REGULATIONS**

11.1 If any candidate is detained due to shortage of attendance in one or more subjects, they are eligible for re-registration to maximum of two earlier orequivalentsubjects at a time as and when offered.

11.2 The candidate who fails in any subject will be given two chances to pass the same subject; otherwise, he has to identify an equivalent subject as per R15 Academic Regulations.

12. **GENERAL**

12.1 **Credit**: A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (lecture or tutorial) or two hours of practical work/field work per week.

12.2 **Credit Point**: It is the product of grade point and number of credits for a course.

12.3 Wherever the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”.

12.4 The academic regulation should be read as a whole for the purpose of any interpretation.

12.5 In the case of any doubt or ambiguity in the interpretation of the above rules, the Decision of the Academic Council is final.

12.6 The Academic Council may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the Academic Council.
MALPRACTICES RULES

DISCIPLINARY ACTION FOR IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, cell phones, pager, palm, computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The hall ticket of the candidate is to be cancelled and sent to the controller of examinations, AGI.</td>
</tr>
<tr>
<td>3. Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination(including practical’s and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.</td>
<td>Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
</tr>
<tr>
<td>5.</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6.</td>
<td>Refuses to obey the orders of the Chief Superintendent/Assistant-Superintendent/any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any office relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the college campus or engages in any other act which in the opinion of the officer on In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subjects and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders. They will be handed over to the police and a police case is registered against them.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
<td>7. Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Posses any lethal weapon or firearm in the examination hall.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. If student of the college, who is not a candidate for the particular examination or any person not connected with college indulges in any malpractice or improper conduct mentioned in clause 6 to 8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Comes in a drunken condition to the examination hall.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Copying detected on the basis of internal evidence, such as, during valuation or</td>
</tr>
<tr>
<td></td>
<td>during special scrutiny.</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>12.</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the Malpractices committee, AGI for further action to award suitable punishment.</td>
</tr>
</tbody>
</table>
I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course</td>
<td>Design of Hydraulic and Pneumatic Systems</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Core Course</td>
<td>Advanced Finite Element Analysis</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective -I</td>
<td>Precision Engineering</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective -II</td>
<td>1. Design for Manufacturing and Assembly</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Numerical Methods for Partial Differential Equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Advanced Mechanics of Solids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Elective -II</td>
<td>1. Advanced Mechatronics</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Advanced Mechanics of Composite Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Stress Analysis and Vibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open elective -I</td>
<td>1. Total Quality Management</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Database Management System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab</td>
<td>Computer Aided Design Lab</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>Seminar</td>
<td>50</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>24</td>
<td>8</td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

I YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course-IV</td>
<td>Design of Hydraulic and Pneumatic Systems</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Core Course-V</td>
<td>Flexible manufacturing systems</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Core Course-VI</td>
<td>Computer Aided Manufacturing</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective -III</td>
<td>1. Industrial Robotics</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Production and Operations Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Computational Fluid Dynamics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Elective -IV</td>
<td>1. Design Optimization</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Computer Aided Process Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Intelligent Manufacturing Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective-II</td>
<td>1. Automation in Manufacturing</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Advanced Optimization Techniques and Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab</td>
<td>Computer Aided Manufacturing Lab</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>Seminar</td>
<td>50</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>24</td>
<td>8</td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>
II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comprehensive Viva-Voce</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Project work Review I</td>
<td>-</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>-</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project work Review II</td>
<td>-</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Project Evaluation (Viva-Voce)</td>
<td>16</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>-</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>
UNIT I:
PRINCIPLES OF COMPUTER GRAPHICS: Introduction, graphic primitives, point plotting, lines, Bresenham’s circle algorithm, ellipse, transformation in graphics, coordinate systems, view port, 2D and 3D transformation, hidden surface removal, reflection, shading and generation of characters.

UNIT II:
CAD TOOLS: Definition of CAD Tools, Types of system, CAD/CAM system evaluation criteria, brief treatment of input and output devices. Graphics standard, functional areas of CAD, Modeling and viewing, software documentation, efficient use of CAD software.

GEOMETRIC MODELLING: Types of mathematical representation of curves, wire frame models wire frame entities parametric representation of synthetic curves her mite cubic splines Bezier curves B-splines rational curves.

UNIT III:
SURFACE MODELING: Mathematical representation surfaces, Surface model, Surface entities surface representation, Parametric representation of surfaces, plane surface, rule surface, surface of revolution, Tabulated Cylinder.

UNIT IV:
PARAMETRIC REPRESENTATION OF SYNTHETIC SURFACES: Hermite Bicubic surface, Bezier surface, B- Spline surface, COONs surface, Blending surface Sculptured surface, Surface manipulation — Displaying, Segmentation, Trimming, Intersection, Transformations (both 2D and 3D).

UNIT V:

REFERENCES:
2. CAD/CAM Principles and Applications/ P.N.Rao/TMH/3rd Edition
3. CAD/CAM /Groover M.P./ Pearson education
4. CAD/CAM Concepts and Applications/ Alavala/ PHI
5. CAD / CAM / CIM, Radhakrishnan and Subramanian/ New Age
6. Principles of Computer Aided Design and Manufacturing/ Farid Amirouch/ Pearson
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

ADVANCED FINITE ELEMENT ANALYSIS

UNIT-I:
Introduction to FEM, basic concepts, historical background, applications of FEM, general description, comparison of FEM with other methods, variational approach, Glerkin’s Methods. Coordinates, basic element shapes, interpolation function, Virtual energy principle, Rayleigh – Ritz method, properties of stiffness matrix, treatment of boundary conditions, solution of system of equations, shape functions and characteristics, Basic equations of elasticity, strain-displacement relations.

UNIT-II:
1-D STRUCTURAL PROBLEMS: Axial bar element – stiffness matrix, load vector, temperature effects, Quadratic shape functions and problems.
ANALYSIS OF TRUSSES: Plane Trusses and Space Truss elements and problems

UNIT-III:

UNIT-VI:

UNIT-V:

REFERENCES:
2. Finite Element Methods: Basic Concepts and applications, Alavala, PHI
3. Introduction to Finite Elements in Engineering, Chandrupatla, Ashok and Belegundu, Prentice – Hall
7. Finite Element Method – Krishna Murthy / TMH
8. Finite Element Analysis – Bathe / PHI
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester

L P C
4 - 4

PRECISION ENGINEERING

UNIT – I
CONCEPTS OF ACCURACY

UNIT - II
GEOMETRIC DIMENSIONING AND TOLERANCING
Tolerance zone conversations – Surfaces, Features of Size, Datum Features – Datum Oddly Configured and Curved Surfaces as Datum Features, Equalizing Datums – Datum Feature of Representation – Form controls, Orientation Controls – Logical Approach to Tolerancing.

DATUM SYSTEMS
Degrees of freedom, Grouped Datum systems – different types, two and three mutually perpendicular grouped datum planes, Examples.

UNIT – III
TOLERANCE ANALYSIS

UNIT – IV
TOLERANCE CHARTING TECHNIQUES
Operation Sequence for typical shaft type of components, Preparation of Process drawings for different operations, Tolerance worksheets and centrally analysis, Examples, Design features to facilitate machining, Datum Features – functional and manufacturing Components design – Machining Considerations, Redesign for manufactured normal law.

UNIT – V
FUNDAMENTALS OF NANOTECHNOLOGY
System of nanometer accuracies – Mechanism of metal processing – Nano physical processing of atomic bit units. Nanotechnology and Electrochemical atomic bit processing.

MEASURING SYSTEMS PROCESSING
In processing or in situ measurement of position of processing point- Post process and on-machine measurement of dimensional features and surface-mechanical and optical measuring systems.

TEXT BOOKS:
1. Precision Engineering in Manufacturing/Murthy R.L/New Age International (P) limited 1996.
2. Geometric Dimentioning and Tolerancing/James D.Meadows/Marcel Dekker inc 1995
REFERENCE BOOKS
UNIT I:
INTRODUCTION: Design philosophy steps in Design process - General Design rules for manufacturability - basic principles of design Ling for economical production - creativity in design. Materials: Selection of Materials for design Developments in Material technology - criteria for material selection - Material selection interrelationship with process selection process selection charts.

UNIT II:
MACHINING PROCESS: Overview of various machining processes - general design rules for machining - Dimensional tolerance and surface roughness - Design for machining - Ease - Redesigning of components for machining ease with suitable examples. General design recommendations for machined parts. METAL CASTING: Appraisal of various casting processes, selection of casting process, - general design considerations for casting - casting tolerances – use of solidification simulation in casting design - product design rules for sand casting.

UNIT III:

UNIT-IV
ASSEMBLE ADVANTAGES: Development of the assemble process, choice of assemble method assemble advantages social effects of automation. AUTOMATIC ASSEMBLY TRANSFER SYSTEMS : Continuous transfer, intermittent transfer, indexing mechanisms, and operator - paced free – transfer machine.

UNIT-V:
DESIGN OF MANUAL ASSEMBLY: Design for assembly fits in the design process, general design guidelines for manual assembly, development of the systematic DFA methodology, assembly efficiency, classification system for manual handling, classification system for manual insertion and fastening, effect of part symmetry on handling time, effect of part thickness and size on handling time, effect of weight on handling time, parts requiring two hands for manipulation, effects of combinations of factors, effect of symmetry effect of chamfer design on insertion operations, estimation of insertion time.
REFERENCES:
4. Computer Aided Assembly London/ A Delbainbre/.
5. Product Design for Manufacturing and Assembly/ Geoffrey Boothroyd, Peter Dewhurst & Winston Ansthony Knight/CRC Press/2010
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

UNIT-I:
Introduction to finite difference formula- Parabolic Equation: Introduction – Explicit finite difference approximation to one dimensional equation Crank – Nicholson implicit method – derivation boundary conditions.

UNIT-II:
Alternate direction implicit (ADI) method finite difference in cylindrical and spherical polar coordinates. Convergence stability and consistency: Definitions of local truncation error and consistency convergence analysis – stability analysis by matrix method eigen value von Newmann stability methods, global rounding error-local truncation error-lax’s equation theorem.

UNIT-III:
HYPERBOLIC EQUATIONS: Analytical solution of 1st order quasi linear equation – numerical integration along a characteristic lax wenderoff explicit method. CFI condition wenderoff implicit approximation – propagation of discontinues – Numerical solution by the method of characteristics.

UNIT-IV:
ELLIPTIC EQUATIONS: Introduction – Finite differences in polar co-ordinates – formulas for derivative near a curved boundary analysis of the discretization error of the five point approximation to polman’s equation over a rectangle.

UNIT-V:

REFERENCES:
UNIT – I
SHEAR CENTRE: Bending axis and shear center-shear center for axi-symmetric and unsymmetrical sections.
Unsymmetrical bending: Bending stresses in Beams subjected to Nonsymmetrical bending; Deflection of straight beams due to nonsymmetrical bending.

UNIT – II

UNIT – III
TORSION: Torsion of a cylindrical bar of Circular cross Section; Saint-Venant’s semi-inverse methods; Linear elastic solution; Prandtl elastic membrane (Soap-Film) Analogy; Narrow rectangular cross Section; Hallow thin wall torsion members, Multiply connected Cross section, Thin wall torsion members with restrained ends
Axi-Symmetric Problems: Rotating Discs – Flat discs, Discs of uniform thickness, Discs of Uniform Strength, Rotating Cylinders.

UNIT – IV
THEORY OF PLATES: Introduction; Stress resultants in a flat plate; Kinematics: Strain-Displacement relations for plates; Equilibrium equations for small displacement theory of flat plates; Stress – Strain – Temperature relation for Isotropic plates: Strain energy of a plate; Boundary conditions for plate; Solution of rectangular plate problem; Solution of circular plate problem.
Beams on Elastic Foundation: General theory; Infinite Beam subjected to Concentrated load; boundary conditions; Infinite beam subjected to a distributed lad segment; Semi-infinite beam with concentrated load near its end; Short Beams.

UNIT – V
CONTACT STRESSES: Introduction, problem of determining contact stresses; Assumptions on which a solution for contact stresses is based; Expressions for principal stresses; Methods of computing contact stresses; Deflection of bodies in point contact; Stresses for two bodies in contact over narrow rectangular area (Line contact), Loads normal to area; Stresses for two bodies in line contact. Normal and Tangent to contact area.

REFERENCES:
1. Advanced Mechanics of materials/Seely and Smith/ John Willey
2. Advanced Mechanics of materials / Boresi & Sidebottom/wiely international
3. Advanced strength of materials / Den Hortog J.P./Torrent
4. Theory of Plates /Timoshenko/
5. Strength of materials / Sadhu singh/ Khanna Publishers
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester

CORE ELECTIVE -II
ADVANCED MECHATRONICS

UNIT-I
Mechatronics systems, elements, levels of mechatronics system, Mechatronics design process, system, measurement systems, control systems, microprocessor-based controllers, advantages and disadvantages of mechatronics systems. Sensors and transducers, types, displacement, position, proximity, velocity, motion, force, acceleration, torque, fluid pressure, liquid flow, liquid level, temperature and light sensors.

UNIT-II
Solid state electronic devices, PN junction diode, BJT, FET, DIA and TRIAC. Analog signal conditioning, amplifiers, filtering. Introduction to MEMS & typical applications.

UNIT-III

UNIT-IV
Digital electronics and systems, digital logic control, micro processors and micro controllers, programming, process controllers, programmable logic controllers, PLCs versus computers, application of PLCs for control.

UNIT-V
System and interfacing and data acquisition, DAQS, SCADA, A to D and D to A conversions Dynamic models and analogies, System response. Design of mechatronics systems & future trends.

REFERENCES:
6. Mechatronics/M.D.Singh/J.G.Joshi/PHI.
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester L P C
 4 - 4

CORE ELECTIVE – II
ADVANCED MECHANICS OF COMPOSITE MATERIALS

UNIT – I
BASIC CONCEPTS AND CHARACTERISTICS: Geometric and Physical definitions, natural and man-made composites, Aerospace and structural applications, types and classification of composites.

UNIT – II
MICROMECHANICS: Unidirectional composites, constituent materials and properties, elastic properties of a lamina, properties of typical composite materials, laminate characteristics and configurations. Characterization of composite properties.
Manufacturing methods: Autoclave, tape production, moulding methods, filament winding, man layup, pultrusion, RTM.

Unit – III
Elastic behavior of unidirectional composites: Elastic constants of lamina, relation ship between engineering constants and reduced stiffness and compliances, analysis of laminated composites, constitutive relations.

Unit – IV
STRENGTH OF UNIDIRECTIONAL LAMINA: Micro mechanics of failure, Failure mechanisms, strength of an orthotropic lamina, strength of a lamina under tension and shear maximum stress and strain criteria, application to design. The failure envelope, first ply failure, free-edge effects. Micros mechanical predictions of elastic constants.

Unit – V
ANALYSIS OF LAMINATED COMPOSITE PLATES:
Introduction thin plate theory, specially orthotropic plate, cross and angle ply laminated plates, problems using thin plate theory.

REFERENCES:
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester

L P C
4 - 4

CORE ELECTIVE – II
STRESS ANALYSIS AND VIBRATION

UNIT-I:
Two dimensional elasticity theory in Cartesian coordinates, plane stress problem in polar coordinates, Thick cylinders, Rotating discs - stress concentration.

UNIT- II:
Torsion of non circular prismatic sections, rectangular and axisymmetric, Circular plates, introduction to shell theory — contact stresses.

UNIT- III:
Single degree freedom, two degree freedom system without and with damping - Free and forced vibrations. Transient vibrations.

UNIT- IV:
Transient vibrations of single and two degree freedom systems, multi-degree of freedom systems - applications of matrix methods, continuous systems.

UNIT -V:
Free and forced vibrations of strings bars and beams. Principle of orthogonality - classical and energy methods.

REFERENCES:
2. Advanced strength of materials / Den Hortog J.P./Torrent
4. Theory of Vibrations with Applications/ Thomson W.T./ CBS Publishing
5. Mechanical Vibrations/ Rao S.S./ Addison Wesley Longman
UNIT – I:
INTRODUCTION: The concept of TQM, Quality and Business performance, attitude and involvement of top management, communication, culture and management systems. Management of Process Quality: Definition of quality, Quality Control, a brief history, Product Inspection vs, Process Control, Statistical Quality Control, Control Charts and Acceptance Sampling.

UNIT – II:
CUSTOMER FOCUS AND SATISFACTION: The importance of customer satisfaction and loyalty- Creating satisfied customers, Understanding the customer needs, Process Vs. Customer, internal customer conflict, quality focus, Customer Satisfaction, role of Marketing and Sales, Buyer – Supplier relationships. Bench Marketing: Evolution of Bench Marketing, meaning of Bench marketing, benefits of bench marketing, the bench marketing process, pitfalls of bench marketing.

UNIT – III:
ORGANIZING FOR TQM: The systems approach, Organizing for quality implementation, making the transition from a traditional to a TQM organizing, Quality Circles. Productivity, Quality and Reengineering: The leverage of Productivity and Quality, Management systems Vs. Technology, Measuring Productivity, Improving Productivity Re-engineering.

UNIT – IV:

UNIT – V:
ISO9000: Universal Standards of Quality: ISO around the world, The ISO9000 ANSI/ASQCQ-90. Series Standards, benefits of ISO9000 certification, the third party audit, Documentation ISO9000 and services, the cost of certification implementing the system.

REFERENCES:
1. Total Quality Management / Joel E.Ross/Taylor and Franscis Limited
2. Total Quality Management/P.N.Mukherjee/PHI
3. Beyond TQM / Robert L.Flood
4. Statistical Quality Control / E.L. Grant.
7. Total Engineering Quality Management/Sunil Sharma/Macmillan
UNIT-I
DATA BASE MANAGEMENT SYSTEM

Database System Applications, database system VS file system-view of data-data abstraction–instances and schemas-data models-the ER Model-Relational model-other models-Database languages-DDL-DML-database Access for applications programs-database users and administrator-transaction management-database system structure-storage manager-the query processor-history of database systems-database design and ER diagrams-Beyond ER design entities of ER model-conceptual design with the ER model-conceptual design for large enterprises.

UNIT-II
RELATIONAL MODEL: introduction to the relational model-integrity constraint over relations-enforcing integrity constraints-querying relational data-logical database design-introduction to views-destroying/altering tables and views.

UNIT – III

Form of basic SQL Query–examples of basic SQL Queries-introduction to nested queries-correlated nested queries set-comparison operators-Aggressive operators-Null values-comparison using null values-logical connectivity’s-AND, OR and NOTR-impact on SQL constructs-Outer joins-disallowing NULL values-complex integrity constraints in SQL Triggers and Active Database. Schema refinement-problems caused by redundancy-decompositions-problem related to decomposition-reasoning about FDS-FIRST, SECOND, THIRD Normal forms-BCNF-Lossless join decomposition-Dependency preserving Decomposition-Schema refinement in database design-Multi valued dependencies-forth Normal Form.

UNIT-IV
OVERVIEW OF TRANSACTION MANAGEMENT: ACID properties-Transactions and schedules-concurrent execution of transaction-lock based concurrency control-performance locking-transaction support in SQL-Introduction to crash recovery.

Concurrency Control: serializability and recoverability-introduction to lock management-lock conversions dealing with dead locks-specialized locking techniques concurrency without locking.

UNIT-V

Tree structure Indexing: introduction for tree indexes – indexed sequential access methods (ISAM)-B+ Tree: A dynamic Index structure.

Hash based Indexing: Static Hashing – extendable hashing – Linear Hashing – Extandable vs Linear hashing.

REFERENCES:
4. Introduction to Database Management Systems / C.J.Date/ Pearson Education
6. Database Management Systems/ Elmasri Navrate/ Pearson Education.
7. Database Management Systems /Mathew Leon, Leon Vikas/
8. Database Systems / Connoley/ Pearson Education
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester

L \hspace{1em} P \hspace{1em} C
- \hspace{1em} 4 \hspace{1em} 2

COMPUTER AIDED DESIGN LAB

1) Creation of working drawing, creating geometry, constraining the profile, extracting a part using tools, creating pattern of holes, translating rotating, mirroring, managing the specification tree.

2) Creating sheets and views, creating text and dimensions, creating an assembly, moving components, assembling existing components, creating bill of materials, creating wire frame and surface geometry using generative shape design and sweep tools.

3) Generation of Ferguson’s cubic surface patches, Bezier surface patches. Coons patches. Import and export of drawing from other software.

4) Linear static analysis, Automatic calculation of rigid body modes, uses specified eigen value shift, lumped and consistent mass matrices.

5) Buckling analysis, Jacobi inverse iteration techniques. Steady state harmonic response, mode superposition method, overall structural and damping, linear dynamic analysis, non linear static analysis, non-linear dynamic analysis.

ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

DESIGN OF HYDRAULICS & PNEUMATIC SYSTEMS

UNIT – I:
Oil hydraulic systems Hydraulic pumps, types and construction details, sizing and selection.
Direction control valves, flow and pressure control valves.

UNIT – II:
Linear actuators types Piston rod design sizing and selection, Rotary actuators, hydraulic reservoir accumulators.

UNIT – III:
Design of hydraulic circuits, seals and packings, hydraulic servo techniques, cylinders and air motors.

UNIT – IV:
Sequencing and synchronizing circuits, accumulator, low cost automation Hydro circuits, accumulators, Hydro pneumatic circuits principles of pneumatic circuit design.

UNIT – V:
Maintenance and trouble shooting of hydraulic and pneumatic circuits, components, PLC Automation and uses of Microprocessors.

REFERENCES:
3 Hydraulic and pneumatics/ Andrew Darr/ Jaico Publishing Hoise.
4 Fluid power with applications/ Antony Esponssito/ Prentice Hall
UNIT- I:
Introduction to flexible manufacturing systems. Planning and scheduling and control of FMS. Knowledge based scheduling.

UNIT - II:
Hierarchy of computer control. Supervisory computer.

UNIT - III:
Software for simulation and database of FMS. Specification and selection, trends, application of simulation software.

UNIT - IV:
Manufacturing data systems data flow, CAD/CAM considerations. Planning FMS database, just in time characteristics, Pull method, quality small lot sizes, work station loads, close supplier ties, flexible workforce — line flow strategy.

UNIT - V:
Preventive maintenance. Karban system, implementation issues.

REFERENCES:
2. Production System l3eyond Large Scale Production/ Talichi Ohno/ Toyota Productivity Press India Pvt. Lid.
ANURAG GROUP OF INSTITUTIONS
(Autonomous)
I - M.Tech – II – Semester

L P C
4 - 4

COMPUTER AIDED MANUFACTURING

UNIT – I
COMPUTE-AIDED PROGRAMMING: General information, APT programming, Examples Apt programming problems (2D machining only). NC programming on CAD/CAM systems, the design and implementation of post processors .Introduction to CAD/CAM software, Automatic Tool Path generation.

UNIT – II
TOOLING FOR CNC MACHINES: Interchangeable tooling system, preset and qualified tools, coolant fed tooling system, modular fixturing, quick change tooling system, automatic head changers. DNC Systems and Adaptive Control: Introduction, type of DNC systems, advantages and disadvantages of DNC, adaptive control with optimization, Adaptive control with constraints, Adaptive control of machining processes like turning, grinding.

UNIT – III
POST PROCESSORS FOR CNC:
Introduction to Post Processors: The necessity of a Post Processor, the general structure of a Post Processor, the functions of a Post Processor, DAPP – based- Post Processor: Communication channels and major variables in the DAPP – based Post Processor, the creation of a DAPP – Based Post Processor.

UNIT – IV

UNIT – V

REFERENCES:
3. CAD/CAM Principles and Applications, P.N.Rao, TMH
4. CAD / CAM Theory and Practice./ Ibrahim Zeid, TMH
5. CAD / CAM / CIM, Radhakrishnan and Subramanian, New Age
UNIT – I
INTRODUCTION: Automation and Robotics, Robot anatomy, robot configuration, motions joint notation work volume, robot drive system, control system and dynamic performance, precision of movement.

CONTROL SYSTEM AND COMPONENTS: basic concept and modais controllers control system analysis, robot activation and feedback components. Positions sensors, velocity sensors, actuators sensors, power transmission system.

UNIT – II
MOTION ANALYSIS AND CONTROL: Manipulator kinematics, position representation forward transformation, homogeneous transformation, manipulator path control, robot dynamics, configuration of robot controller.

UNIT – III
END EFFECTORS: Grippers-types, operation, mechanism, force analysis, tools as end effectors consideration in gripper selection and design. SENSORS: Desirable features, tactile, proximity and range sensors, uses sensors in robotics.

MACHINE VISION: Functions, Sensing and Digitizing-imaging, Devices, Lighting techniques, Analog to digital single conversion, image storage, Image processing and Analysis-image data reduction, Segmentation feature extraction. Object recognition, training the vision system, Robotics application.

UNIT – IV
ROBOT PROGRAMMING: Lead through programming, Robot programming as a path in space, Motion interpolation, WAIT, SINONAL AND DELAY commands, Branching capabilities and Limitations.

ROBOT LANGUAGES: Textual robot Languages, Generation, Robot language structures, Elements in function.

UNIT – V
ROBOT CELL DESGIN AND CONTROL: Robot cell layouts-Robot centered cell, In-line robot cell, Considerations in work design, Work and control, Inter locks, Error detect ion, Work wheel controller.

ROBOT APPLICATION: Material transfer, Machine loading/unloading. Processing operation, Assembly and Inspection, Feature Application

REFERENCES:
1. Industrial Robotics / Groover M P /Pearson Edu.
5. Robot Analysis and Intelligence / Asada and Slotine / Wiley Inter-Science.
7. Robotics and Control / Mittal R K & Nagrath I J / TMH
UNIT – I
OPERATION MANAGEMENT: Definition – Objectives – Types of production systems – historical development of operations management – Current issues in operation management.

UNIT- II

UNIT III

UNIT IV

UNIT V

REFERENCES:
1. Operations Management by E.S. Buffs
5. Operations Management “ by Chase
6. Production and Operation Management by Panner Selvam
7. Production and Operation Analysis by Nahima
UNIT – I
INTRODUCTION: Finite difference method, finite volume method, finite element method, governing equations and boundary conditions, Derivation of finite difference equations.
Solution methods: Solution methods of elliptical equations — finite difference formulations, interactive solution methods, direct method with Gaussian elimination. Parabolic equations-exPLICIT schemes and Von Neumann stability analysis, implicit schemes, alternating direction implicit schemes, approximate factorization, fractional step methods, direct method with tridiagonal matrix algorithm.

UNIT – II

UNIT – III
FORMULATIONS OF INCOMPRESSIBLE VISCOUS FLOWS: Formulations of incompressible viscous flows by finite difference methods, pressure correction methods, vortex methods.
Treatment of compressible flows: potential equation, Euler equations, Navier-stokes system of equations, flow field-dependent variation methods, boundary conditions, example problems.

UNIT – IV
FINITE VOLUME METHOD: Finite volume method via finite difference method, formulations for two and three-dimensional problems.

UNIT – V
STANDARD VARIATIONAL METHODS: Linear fluid flow problems, steady state problems, Transient problems.

REFERENCES:
7. Introduction to Theoretical and Computational Fluid Dynamics/C. Pozrikidis /Oxford University Press/2nd Edition
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

L P C
4 - 4

CORE ELECTIVE – IV
DESIGN OPTIMIZATION

UNIT- I:
General Characteristics of mechanical elements, adequate and optimum design, principles of optimization, formulation of objective function, design constraints, classification of optimization problems. Single and multivariable optimization techniques

UNIT- II:
Technique of unconstrained minimization. Golden section, Random, Pattern and Gradient search methods, interpolation methods, equality and inequality constraints.

UNIT-III:
Direct methods and indirect methods using penalty function, Lagrange multipliers, Geometric programming, stochastic programming, Genetic algorithms

UNIT-IV:
Engineering applications, structural-design application axial and transverse loaded members for minimum cost, maximum weight. Design of shafts and torsion members, design optimization of springs.

UNIT-V:
Dynamics applications for two degree freedom system. vibration absorbers. Application in mechanisms.

REFERENCES:
4. Optimization for Engineering Design Algorithms and Examples/ Kalyanamoy Deb/Prentice Flail of India.
UNIT-I
Introduction to CAPP: Information requirement for process planning system, Role of process planning, advantages of conventional process planning over CAPP, Structure of Automated process planning system, feature recognition, methods.
Generative CAPP system: Importance, principle of Generative CAPP system, automation of logical decisions, Knowledge based systems, Inference Engine, implementation, benefits.

UNIT-II
Retrieval CAPP system: Significance, group technology, structure, relative advantages, implementation, and applications.
Selection of manufacturing sequence: Significance, alternative-manufacturing processes, reduction of total set-up cost for a particular sequence, quantitative methods for optimal selection, examples.

UNIT-III
Determination of machining parameters: reasons for optimal selection of machining parameters, effect of parameters on production rate, cost and surface quality, different approaches, advantages of mathematical approach over conventional approach, solving optimization models of machining processes.

UNIT –IV
Determination of manufacturing tolerances: design tolerances, manufacturing tolerances, methods of tolerance allocation, sequential approach, integration of design and manufacturing tolerances, advantages of integrated approach over sequential approach.

UNIT –V
Generation of tool path: Simulation of machining processes, NC tool path generation, graphical implementation, determination of optimal index positions for executing fixed sequence, quantitative methods.
Implementation techniques for CAPP: MIPLAN system, Computer programming languages for CAPP, criteria for selecting a CAPP system and benefits of CAPP. Computer integrated planning systems, and Capacity planning system.

REFERENCES:
1. Automation, Production systems and Computer Integrated Manufacturing System/ Mikell P Groover
3. Computer Engineering /David Bedworth
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

L P C
4 - 4

CORE ELECTIVE – IV

INTELLIGENT MANUFACTURING SYSTEMS

UNIT I:

UNIT II:
Components of Knowledge Based Systems - Basic Components of Knowledge Based Systems, Knowledge Representation, Comparison of Knowledge Representation Schemes, Interference Engine, Knowledge Acquisition.

UNIT III:
Machine Learning - Concept of Artificial Intelligence, Conceptual Learning, Artificial Neural Networks - Biological Neuron, Artificial Neuron, Types of Neural Networks, Applications in Manufacturing.

UNIT IV:

UNIT V:

REFERENCES:
1. Intelligent Manufacturing Systems/ Andrew Kusiak/Prentice Hall.
2. Artificial Neural Networks/ Yagna Narayana PHI/2006
4. Neural networks: A comprehensive foundation/ Simon Hhaykin/ PHI.
5. Artificial neural networks/ B.Vegnanarayana/PHI
6. Neural networks in Computer intelligence/ Li Min Fu/ TMH/2003
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

L P C
4 - 4

OPEN ELECTIVE – II

AUTOMATION IN MANUFACTURING

UNIT – I
OVERVIEW OF MANUFACTURING AND AUTOMATION: Production systems, Automation in production systems, Automation principles and strategies, Manufacturing operations, production facilities. Basic elements of an automated system, levels of automation; Hardware components for automation and process control, programmable logic controllers and personal computers.

UNIT – II:

UNIT – III:

UNIT – IV:

UNIT – V:
QUALITY CONTROL AND SUPPORT SYSTEMS: Quality in Design and manufacturing, inspection principles and strategies, Automated inspection, contact Vs non contact, CMM. Manufacturing support systems. Quality function deployment, computer aided process planning, concurrent engineering, shop floor control, just in time and lean production.

REFERENCES:
2. Automation, Production Systems and CIM/ MikeJ P. Grower/PHI
6. Manufacturing and Automation Technology / R Thomas Wright and Michael Berkeihiser / Good Heart/Willcox Publishers
ANURAG GROUP OF INSTITUTIONS
(Autonomous)
I - M.Tech – II – Semester

OPEN ELECTIVE – II
ADVANCED OPTIMIZATION TECHNIQUES AND APPLICATION

UNIT-I

UNIT – II

UNIT – III
DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.

UNIT IV

UNIT V
STOCHASTIC PROGRAMMING: Basic concepts of probability theory, random variables – distributions – mean, variance, Correlation, co variance, joint probability distribution – stochastic linear, dynamic programming.

REFERENCES:
1. Optimization theory & Applications/ S.S Rao/ New Age International
2. Introductory operation research/Kasan & Kumar/Springar
4. Operation Research/H.A. Taha/TMH
5. Optimization in operations research/R.L Rardin
6. Optimization Techniques/Benugundu & Chandraputla/Person Asia
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

L P C

4 2

COMPUTER AIDED MACHINING LAB

1) Features and selection of CNC Turning for a given job.
2) Features and selection of CNC Milling center for a given job.
3) Practice in part programming on CNC Milling center.
4) Practice in part programming on CNC turning center.
5) Practice in machining operation of CNC turning machines, subroutine techniques and use of cycles.
6) Practice in machining operation of CNC Milling center, tool selection and sequences of operations, tool setting on machine.
7) Practice in Automated Programming Tool (APT) based NC programming.