ACADEMIC REGULATIONS, COURSE STRUCTURE
AND DETAILED SYLLABUS

M.Tech (MACHINE DESIGN)

FOR
MASTER OF TECHNOLOGY TWO YEAR POST GRADUATE COURSE
(Applicable for the batches admitted from 2015-2016)

R15

ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)
Venkatapur, Ghatkesar, Hyderabad – 500 088
Applicable for the students of M. Tech. (Regular) programme from the Academic Year 2015-16 and onwards

The M. Tech. Degree of Jawaharlal Nehru Technological University Hyderabad shall be conferred on candidates who are admitted to the programme and who fulfill all the requirements for the award of the Degree.

1.0 **ELIGIBILITY FOR ADMISSIONS**

Admission to the above programme shall be made subject to eligibility, qualification and specialization as prescribed by the University from time to time.

Admissions shall be made on the basis of merit/rank obtained by the candidates at the qualifying Entrance Test conducted by the University or on the basis of any other order of merit as approved by the University, subject to reservations as laid down by the Govt. from time to time.

2.0 **AWARD OF M. Tech. DEGREE**

2.1 A student shall be declared eligible for the award of the M. Tech. Degree, if he pursues a course of study in not less than two and not more than four academic years, failing which he shall forfeit his seat in M. Tech. programme.

2.2 The student shall register for all 88 credits and secure all the 88 credits.

2.3 The minimum instruction days in each semester are 90.

3.0 **COURSES OF STUDY**

The following specializations are offered at present for the M. Tech. programme of study.

1. CAD/CAM
2. Computer Networks and Information Security
3. Computer Science
4. Computer Science and Engineering
5. Construction Management
6. Electrical Power Systems
7. Electronics and Communication Engineering
8. Embedded Systems
9. Machine Design
10. Power Electronics and Electrical Drives
11. Software Engineering
12. Structural Engineering
13. VLSI System Design
14. Wireless and Mobile Communication
4 Course Registration

4.1 A ‘Faculty Advisor or Counselor’ shall be assigned to each student, who will advise him on the Post Graduate Programme (PGP), its Course Structure and Curriculum, Choice/Option for Subjects/ Courses, based on his competence, progress, pre-requisites and interest.

4.2 Academic Section of the College invites ‘Registration Forms’ from students with in 15 days from the commencement of class work through ‘ON-LINE SUBMISSIONS’, ensuring ‘DATE and TIME Stamping’. The ON-LINE Registration Requests for any ‘CURRENT SEMESTER’ shall be completed BEFORE the commencement of SEEs (Semester End Examinations) of the ‘PRECEDING SEMESTER’.

4.3 A Student can apply for ON-LINE Registration, ONLY AFTER obtaining the ‘WRITTEN APPROVAL’ from his Faculty Advisor, which should be submitted to the College Academic Section through the Head of Department (a copy of it being retained with Head of Department, Faculty Advisor and the Student).

4.4 If the Student submits ambiguous choices or multiple options or erroneous entries - during ON-LINE Registration for the Subject(s) / Course(s) under a given/ specified Course Group/ Category as listed in the Course Structure, only the first mentioned Subject/ Course in that Category will be taken into consideration.

4.5 Subject/ Course Options exercised through ON-LINE Registration are final and CANNOT be changed, nor can they be inter-changed; further, alternate choices will also not be considered. However, if the Subject/ Course that has already been listed for Registration (by the Head of Department) in a Semester could not be offered due to any unforeseen or unexpected reasons, then the Student shall be allowed to have alternate choice - either for a new Subject (subject to offering of such a Subject), or for another existing Subject (subject to availability of seats), which may be considered. Such alternate arrangements will be made by the Head of Department, with due notification and time-framed schedule, within the FIRST WEEK from the commencement of Class-work for that Semester.

5 ATTENDANCE

The programmes are offered on a unit basis with each subject being considered a unit.

5.1 Attendance in all classes (Lectures/Laboratories etc.) is compulsory. The minimum required attendance in each theory / Laboratory etc. is 75% including the days of attendance in sports, games, NCC and NSS activities for appearing for the End Semester examination. A student shall not be permitted to appear for the Semester End Examinations (SEE) if attendance is less than 75%.

5.2 Condonation of shortage of attendance in each subject up to 10% (65% and above and below75%) in each semester shall be granted by the College Academic Committee on genuine medical grounds and valid reasons on representation by the candidate with supporting evidence.
5.3 Shortage of Attendance below 65% in each subject shall not be condoned.

5.4 Students whose shortage of attendance is not condoned in any subject are not eligible to write their end semester examination of that subject and their registration shall stand cancelled.

5.5 A prescribed fees hall be payable towards condonation of shortage of attendance.

5.6 A candidate shall get minimum required attendance at least in three (3) theory subjects in the present semester to get promoted to the next semester. In order to qualify for the award of the M.Tech Degree, The candidate shall complete all the academic requirements of the subjects, as per the course structure.

5.7 A student shall not be promoted to the next semester unless he satisfies the attendance requirement of the present Semester, as applicable. They may seek readmission into that semester when offered next. If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission in to the same class.

6 EVALUATION

The performance of the candidate in each semester shall be evaluated subject-wise, with a maximum of 100 marks for theory and 100 marks for practicals, on the basis of Internal Evaluation and End Semester Examination.

6.1 For the theory subjects 60 marks shall be awarded for the performance in the Semester End Examination and 40 marks shall be awarded for Continuous Internal Evaluation (CIE). The Continuous Internal Evaluation shall be made based on the average of the marks secured in the two Mid Term-Examinations conducted, one in the middle of the Semester and the other, immediately after the completion of Semester instructions. Each mid-term examination shall be conducted for a total duration of 120 minutes with Part A as compulsory question (10 marks) consisting of 5 sub-questions carrying 2 marks each, and Part B to be answered 5 questions carrying 8 marks each. There will be two questions from each unit and only one should be answered.

6.2 For practical subjects, 60 marks shall be awarded for performance in the Semester End
Examinations and 40 marks shall be awarded for day-to-day performance as Internal Marks.

6.3 The practical end semester examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed by the Principal from the panel of examiners recommended by Chairman, Board of Studies in respective Branches.

6.4 There shall be two seminar presentations during I year I semester and II semester. For seminar, a student under the supervision of a faculty member, shall collect the literature on a topic and critically review the literature and submit it to the department in a report form and shall make an oral presentation before the Departmental Academic Committee consisting of Head of the Department, Supervisor and two other senior faculty members of the department. For each Seminar there will be only internal evaluation of 50 marks. A candidate has to secure a minimum of 50% of marks to be declared successful. If he fails to fulfill minimum marks, he has to reappear during the supplementary examinations.

6.5 There shall be a Comprehensive Viva-Voce in II year I Semester. The Comprehensive Viva-Voce is intended to assess the students’ understanding of various subjects he has studied during the M. Tech. course of study. The Head of the Department shall be associated with the conduct of the Comprehensive Viva-Voce through a Committee. The Committee consisting of Head of the Department, one senior faculty member and an external examiner. The external examiner shall be appointed by the Principal from the panel of 3 examiners recommended by Chairman, Board of Studies in respective Branches. There are no internal marks for the Comprehensive Viva-Voce and evaluates for maximum of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful. If he fails to fulfill minimum marks, he has to reappear during the supplementary examinations.

6.6 A candidate shall be deemed to have secured the minimum academic requirement in a subject if he secures a minimum of 40% of marks in the Semester End Examination and a minimum aggregate of 50% of the total marks in the Semester End Examination and Continuous Internal Evaluation taken together.

6.7 In case the candidate does not secure the minimum academic requirement in any subject (as specified in 6.6) he has to reappear for the Semester End Examination in that subject.

6.8 A candidate shall be given one chance to re-register for the subjects if the internal marks secured by a candidate is less than 50% and failed in that subject for maximum of two subjects and should register within four weeks of commencement of the class work. In such a case, the candidate must re-register for the subjects and secure the required minimum attendance. The candidate’s attendance in the re-registered subject(s) shall be calculated separately to decide upon his eligibility for writing the Semester End Examination in those subjects. In the event of the student taking another chance, his Continuous Internal Evaluation (internal) marks and Semester End Examination marks obtained in the previous attempt stands cancelled.

6.9 In case the candidate secures less than the required attendance in any subject, he shall not be permitted to write the Semester End Examination in that subject. He shall re-register for the subject when next offered.
Examinations and Assessment - The Grading System

7.1 Marks will be awarded to indicate the performance of each student in each Theory Subject, or Lab/Practicals, or Seminar, or Project, etc., based on the % marks obtained in CIE + SEE (Continuous Internal Evaluation + Semester End Examination, both taken together) as specified in Item 6 above, and a corresponding Letter Grade shall be given.

7.2 As a measure of the student’s performance, a 10-point Absolute Grading System using the following Letter Grades (UGC Guidelines) and corresponding percentage of marks shall be followed:

<table>
<thead>
<tr>
<th>% of Marks Secured (Class Intervals)</th>
<th>Letter Grade (UGC Guidelines)</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% and above</td>
<td>O (Outstanding)</td>
<td>10</td>
</tr>
<tr>
<td>(≥ 80%, ≤ 100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 80% but not less than 70%</td>
<td>A+ (Excellent)</td>
<td>9</td>
</tr>
<tr>
<td>(≥ 70%, < 80%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 70% but not less than 60%</td>
<td>A (Very Good)</td>
<td>8</td>
</tr>
<tr>
<td>(≥ 60%, < 70%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 60% but not less than 55%</td>
<td>B+ (Good)</td>
<td>7</td>
</tr>
<tr>
<td>(≥ 55%, < 60%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 55% but not less than 50%</td>
<td>B (Above Average)</td>
<td>6</td>
</tr>
<tr>
<td>(≥ 50%, < 55%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 50%</td>
<td>F (Fail)</td>
<td>0</td>
</tr>
<tr>
<td>(< 50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>0</td>
</tr>
</tbody>
</table>

7.3 A student obtaining F Grade in any Subject shall be considered ‘failed’ and is be required to reappear as ‘Supplementary Candidate’ in the Semester End Examination (SEE), as and when offered. In such cases, his Internal Marks (CIE Marks) in those Subjects will remain the same as those he obtained earlier.

7.4 A student not appeared for examination then ‘Ab’ Grade will be allocated in any Subject shall be considered ‘failed’ and will be required to reappear as ‘Supplementary Candidate’ in the Semester End Examination (SEE), as and when offered.

7.5 A Letter Grade does not imply any specific Marks percentage and it will be the range of marks percentage.
In general, a student shall not be permitted to repeat any Subject/ Course(s) only for the sake of ‘Grade Improvement’ or ‘SGPA/ CGPA Improvement’.

A student earns Grade Point (GP) in each Subject/ Course, on the basis of the Letter Grade obtained by him in that Subject/ Course. The corresponding ‘Credit Points’ (CP) are computed by multiplying the Grade Point with Credits for that particular Subject/ Course.

\[
\text{Credit Points (CP)} = \text{Grade Point (GP)} \times \text{Credits} \ldots \text{For a Course}
\]

The Student passes the Subject/ Course only when he gets \(GP \geq 6 \) (B Grade or above).

The Semester Grade Point Average (SGPA) is calculated by dividing the Sum of Credit Points (\(\Sigma CP \)) secured from ALL Subjects/ Courses registered in a Semester, by the Total Number of Credits registered during that Semester. SGPA is rounded off to TWO Decimal Places. SGPA is thus computed as

\[
SGPA = \left(\frac{\sum_{i=1}^{N} C_i G_i}{\sum_{i=1}^{N} C_i} \right) \text{For each Semester,}
\]

where ‘\(i \)’ is the Subject indicator index (takes into account all Subjects in a Semester), ‘N’ is the no. of Subjects ‘REGISTERED’ for the Semester (as specifically required and listed under the Course Structure of the parent Department), C is the no. of Credits allotted to the \(i \)th Subject, and G represents the Grade Points (GP) corresponding to the Letter Grade awarded for that \(i \)th Subject.

The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student over all Semesters considered for registration. The CGPA is the ratio of the Total Credit Points secured by a student in ALL registered Courses in ALL Semesters, and the Total Number of Credits registered in ALL the Semesters. CGPA is rounded off to TWO Decimal Places. CGPA is thus computed from the I Year Second Semester onwards, at the end of each Semester, as per the formula

\[
CGPA = \left(\frac{\sum_{j=1}^{M} C_j G_j}{\sum_{j=1}^{M} C_j} \right) \ldots \text{for all S Semesters registered}
\]

\(\text{(ie., up to and inclusive of S Semesters, } S \geq 2 \text{).} \)

where ‘M’ is the TOTAL no. of Subjects (as specifically required and listed under the Course Structure of the parent Department) the Student has ‘REGISTERED’ from the 1st Semester onwards up to and inclusive of the Semester S (obviously \(M > N \)), ‘\(j \)’ is the Subject indicator index (takes into account all Subjects from 1 to S Semesters), C is the no. of Credits allotted to the \(j \)th Subject, and G represents the Grade Points (GP) corresponding to the Letter Grade awarded for that \(j \)th Subject. After registration and completion of I Year I Semester however, the SGPA of that Semester itself may be taken as the CGPA, as there are no cumulative effects.

For Calculations listed in Item 7.6 – 7.10, performance in failed Subjects/ Courses
(securing F Grade) will also be taken into account, and the Credits of such Subjects/ Courses will also be included in the multiplications and summations.

8. **EVALUATION OF PROJECT/DISSECTORATION WORK**

Every candidate shall be required to submit a thesis or dissertation on a topic approved by the Project Review Committee.

8.1 A Project Review Committee (PRC) shall be constituted with Head of the Department as Chairperson, Project Supervisor and one senior faculty member of the Departments offering the M. Tech. programme.

8.2 Registration of Project Work: A candidate is permitted to register for the project work after satisfying the attendance requirement of all the subjects, both theory and practical.

8.3 After satisfying 8.2, a candidate has to submit, in consultation with his Project Supervisor, the title, objective and plan of action of his project work to the PRC for approval. Only after obtaining the approval of the PRC the student can initiate the Project work.

8.4 If a candidate wishes to change his supervisor or topic of the project, he can do so with the approval of the PRC. However, the PRC shall examine whether or not the change of topic/supervisor leads to a major change of his initial plans of project proposal. If yes, his date of registration for the project work starts from the date of change of Supervisor or topic as the case may be.

8.5 A candidate shall submit his project status report in two stages at least with a gap of 3 months between them.

8.6 The work on the project shall be initiated at the beginning of the II year and the duration of the project is two semesters. A candidate is permitted to submit Project Thesis only after successful completion of all theory and practical courses with the approval of PRC not earlier than 40 weeks from the date of registration of the project work. For the approval of PRC the candidate shall submit the draft copy of thesis to the Head of the Department and make an oral presentation before the PRC.

8.7 Three copies of the Project Thesis certified by the supervisor shall be submitted to the College/School/Institute.

8.8 For Project work Review I in II Year I Sem. there is an internal marks of 50, the evaluation should be done by the PRC for 25 marks and Supervisor will evaluate for 25 marks. The Supervisor and PRC will examine the Problem Definition, Objectives, Scope of Work, Literature Survey in the same domain. A candidate has to secure a minimum of 50% of marks to be declared successful for Project Work Review I. If he fails to fulfill minimum marks, he has to reappear as per the recommendations of PRC.

8.9 For Project work Review II in II Year II Sem. there is an internal marks of 50, the evaluation should be done by the PRC for 25 marks and Supervisor will evaluate for 25 marks. The PRC will examine the overall progress of the Project Work and
decide the Project is eligible for final submission or not. A candidate has to secure a minimum of 50% of marks to be declared successful for Project Work Review II. If he fails to fulfill minimum marks, he has to reappear as per the recommendations of PRC.

8.10 For Project Evaluation (Viva Voce) in II Year II Sem. there is an external marks of 150 and the same evaluated by the External examiner appointed by the Institution. The candidate has to secure minimum of 50% marks in Project Evaluation (Viva-Voce) examination.

8.11 If he fails to fulfill as specified in 8.10, he will reappear for the Viva-Voce examination only after three months. In the reappeared examination also, fails to fulfill, he will not be eligible for the award of the degree.

8.12 The thesis shall be adjudicated by one examiner selected by the Institution. For this, Chairmen, BOS of the respective departments shall submit a panel of 3 examiners, who are eminent in that field with the help of the concerned guide and senior faculty of the department.

8.13 If the report of the examiner is not favourable, the candidate shall revise and resubmit the Thesis. If the report of the examiner is un favourable again, the thesis shall be summarily rejected.

8.14 If the report of the examiner is favourable, Project Viva-Voce examination shall be conducted by a board consisting of the Supervisor, Head of the Department and the external examiner who adjudicated the Thesis.

8.15 The Head of the Department shall coordinate and make arrangements for the conduct of Project Viva-Voce examination.

9. **AWARD OF DEGREE AND CLASS**

9.1 A Student who registers for all the specified Subjects/ Courses as listed in the Course Structure, satisfies all the Course Requirements, and passes the examinations prescribed in the entire PG Programme (PGP), and secures the required number of 88 Credits (with CGPA ≥ 6.0), shall be declared to have ‘QUALIFIED’ for the award of the M.Tech. Degree in the chosen Branch of Engineering and Technology with specialization as he admitted.

9.2 **Award of Class**

After a student has satisfied the requirements prescribed for the completion of the programme and is eligible for the award of M. Tech. Degree, he shall be placed in one of the following three classes based on the CGPA:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>≥ 7.75</td>
</tr>
<tr>
<td>First Class</td>
<td>6.75 ≤ CGPA < 7.75</td>
</tr>
<tr>
<td>Second Class</td>
<td>6.00 ≤ CGPA < 6.75</td>
</tr>
</tbody>
</table>

9.3 A student with final CGPA (at the end of the PGP) < 6.00 will not be eligible for the Award of Degree.
10. **WITHHOLDING OF RESULTS**

If the student has not paid the dues, if any, to the institution or if any case of indiscipline is pending against him, the result of the student will be withheld and he will not be allowed into the next semester. His degree will be withheld in such cases.

11. **TRANSITORY REGULATIONS**

11.1 If any candidate is detained due to shortage of attendance in one or more subjects, they are eligible for re-registration to maximum of two earlier orequivalent subjects at a time as and when offered.

11.2 The candidate who fails in any subject will be given two chances to pass the same subject; otherwise, he has to identify an equivalent subject as per R15 Academic Regulations.

12. **GENERAL**

12.1 **Credit:** A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (lecture or tutorial) or two hours of practical work/field work per week.

12.2 **Credit Point:** It is the product of grade point and number of credits for a course.

12.3 Wherever the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”.

12.4 The academic regulation should be read as a whole for the purpose of any interpretation.

12.5 In the case of any doubt or ambiguity in the interpretation of the above rules, the Decision of the Academic Council is final.

12.6 The Academic Council may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the Academic Council.
<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in</td>
<td>Expulsion from the examination hall and</td>
</tr>
<tr>
<td>examination hall, any paper, note book,</td>
<td>cancellation of the performance in that subject</td>
</tr>
<tr>
<td>programmable calculators, cell phones,</td>
<td>only</td>
</tr>
<tr>
<td>pager, palm, computers or any other</td>
<td></td>
</tr>
<tr>
<td>form of material concerned with or</td>
<td></td>
</tr>
<tr>
<td>related to the subject of the</td>
<td></td>
</tr>
<tr>
<td>examination (theory or practical) in</td>
<td></td>
</tr>
<tr>
<td>which he is appearing but has not</td>
<td></td>
</tr>
<tr>
<td>made use of (material shall include</td>
<td></td>
</tr>
<tr>
<td>any marks on the body of the candidate</td>
<td></td>
</tr>
<tr>
<td>which can be used as an aid</td>
<td></td>
</tr>
<tr>
<td>in the subject of the examination)</td>
<td></td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or</td>
<td>Expulsion from the examination hall and</td>
</tr>
<tr>
<td>receives it from any other candidate</td>
<td>cancellation of the performance in that subject</td>
</tr>
<tr>
<td>orally or by any other body language</td>
<td>only of all the candidates involved. In case of an</td>
</tr>
<tr>
<td>methods or communicates through cell</td>
<td>outsider, he will be handed over to the police and a</td>
</tr>
<tr>
<td>phones with any candidate or persons</td>
<td>case is registered against him.</td>
</tr>
<tr>
<td>in or outside the exam hall in respect</td>
<td></td>
</tr>
<tr>
<td>of any matter.</td>
<td></td>
</tr>
<tr>
<td>2. Has copied in the examination</td>
<td>Expulsion from the examination hall and</td>
</tr>
<tr>
<td>hall from any paper, book,</td>
<td>cancellation of the performance in that subject</td>
</tr>
<tr>
<td>programmable calculators, palm</td>
<td>only and all other subjects the candidates has</td>
</tr>
<tr>
<td>computers or any other form of</td>
<td>already appeared including practical examinations</td>
</tr>
<tr>
<td>material relevant to the subject of</td>
<td>and project work and shall not be permitted to appear</td>
</tr>
<tr>
<td>the examination (theory or practical)</td>
<td>for the remaining examinations of the subjects of</td>
</tr>
<tr>
<td>in which the candidate is appearing.</td>
<td>that semester/year. The hall ticket of the candidate</td>
</tr>
<tr>
<td></td>
<td>is to be cancelled and sent to the controller of</td>
</tr>
<tr>
<td></td>
<td>examinations, AGI.</td>
</tr>
<tr>
<td>3. Impersonates any other candidate</td>
<td>The candidate who has impersonated shall be</td>
</tr>
<tr>
<td>in connection with the examination.</td>
<td>expelled from examination hall. The candidate is</td>
</tr>
<tr>
<td></td>
<td>also debarred and forfeits the seat. The</td>
</tr>
<tr>
<td></td>
<td>performance of the original candidate who has</td>
</tr>
<tr>
<td></td>
<td>been impersonated, shall be cancelled in all the</td>
</tr>
<tr>
<td></td>
<td>subjects of the examination (including practical’s</td>
</tr>
<tr>
<td></td>
<td>and project work) already appeared and shall not</td>
</tr>
<tr>
<td></td>
<td>be allowed to appear for examinations of the</td>
</tr>
<tr>
<td></td>
<td>remaining subjects of that semester/year. The</td>
</tr>
<tr>
<td>4.</td>
<td>Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
</tr>
<tr>
<td>5.</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6.</td>
<td>Refuses to obey the orders of the Chief Superintendent/Assistant-Superintendent/any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any office relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the college campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subjects and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders. They will be handed over to the police and a police case is registered against them.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td></td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester examinations. The continuation of the course by the candidate is subject to the academic regulation in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>8.</td>
<td>Posses any lethal weapon or firearm in the examination hall.</td>
</tr>
<tr>
<td></td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.</td>
</tr>
<tr>
<td>9.</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with college indulges in any malpractice or improper conduct mentioned in clause 6 to 8</td>
</tr>
<tr>
<td></td>
<td>Student of the college’s expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.</td>
</tr>
<tr>
<td>10.</td>
<td>Comes in a drunken condition to the examination hall.</td>
</tr>
<tr>
<td></td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.</td>
</tr>
<tr>
<td>11.</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
</tr>
<tr>
<td></td>
<td>Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work</td>
</tr>
<tr>
<td></td>
<td>Of the semester/year examinations.</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>12.</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the Malpractices committee, AGI for further action to award suitable punishment.</td>
</tr>
</tbody>
</table>
I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course I</td>
<td>Advanced Mechanical Engineering Design</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Course II</td>
<td>Advanced Mechanics of Solids</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Course III</td>
<td>Fatigue & Fracture Mechanics</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Elective I</td>
<td>1. Advanced Finite Element Analysis</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Applied Tribology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Theory of Elasticity & Plasticity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Elective II</td>
<td>1. Gear Engineering</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Advanced Mechanics of Composite Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Advanced Computer Aided Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective I</td>
<td>1. Computational Methods in engineering</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Database Management System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab</td>
<td>Dynamics & Analysis of Structure Lab</td>
<td>40</td>
<td>60</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>Seminar</td>
<td>50</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>24</td>
<td>8</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course IV</td>
<td>Advanced Mechanics of Machinery</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Course V</td>
<td>Mechanical Vibrations</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Course VI</td>
<td>Experimental Stress Analysis</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Elective III</td>
<td>1. Pressure Vessel Design</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Design Synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Industrial Robotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Elective IV</td>
<td>1. Mechatronics</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Computational Fluid Dynamics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Theory of plates and Shells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective II</td>
<td>1. Advanced Optimization Techniques and Applications</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Signal Analysis and Condition Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab</td>
<td>Computer Aided Testing & Modeling Lab</td>
<td>40</td>
<td>60</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>Seminar</td>
<td>50</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>24</td>
<td>8</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comprehensive Viva-Voce</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Project work Review I</td>
<td>-</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>-</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project work Review II</td>
<td>-</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Project Evaluation (Viva-Voce)</td>
<td>16</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>-</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>
UNIT I
DESIGN PHILOSOPHY: Design process, Problem formation, Introduction to product design, Various design models-Shigley model, Asimov model and Norton model, Need analysis, Strength considerations-standardization. Creativity, Creative techniques, Material selections, Notches and stress concentration, design for safety and Reliability

UNIT II
PRODUCT DESIGN: Product strategies, value, planning and specification, concept generation, concept selection, concept testing.
Design for manufacturing: Forging design, Casting design, Design process for non metallic parts, Plastics, Rubber, Ceramic, Wood and Glass parts like. Material selection in machine design

UNIT III
FAILURE THEORIES: Static failure theories, Distortion energy theory, Maximum shear stress theory, Coulomb-Mohr’s theory, Modified Mohr’s theory, Fracture mechanics theory, Fatigue mechanisms, Fatigue failure models, Design for fatigue strength and life, creep: Types of stress variation, design for fluctuating stresses, design for limited cycles, multiple stress cycles, Fatigue failure theories, cumulative fatigue damage, thermal fatigue and shock, harmful and beneficial residual stresses, Yielding and transformation

UNIT IV
SURFACE FAILURES: Surface geometry, mating surfaces, oil film and their effects, design values and procedures, adhesive wear, abrasive wear, corrosion wear, surface fatigue, different contacts, dynamic contact stresses, surface fatigue failures, surface fatigue strength,

UNIT V

REFERENCES:
5. Product Design and Manufacturing /A.K. Chitale and R.C. Gupta / Prentice Hall
UNIT – I
SHEAR CENTRE: Bending axis and shear center-shear center for axi-symmetric and unsymmetrical sections.
Unsymmetrical bending: Bending stresses in Beams subjected to Nonsymmetrical bending; Deflection of straight beams due to nonsymmetrical bending.

UNIT – II

UNIT – III
TORSION: Torsion of a cylindrical bar of Circular cross Section; Saint-Venant’s semi-inverse methods; Linear elastic solution; Prandtl elastic membrane (Soap-Film) Analogy; Narrow rectangular cross Section; Hallow thin wall torsion members, Multiply connected Cross section, Thin wall torsion members with restrained ends
Axi-Symmetric Problems: Rotating Discs – Flat discs, Discs of uniform thickness, Discs of Uniform Strength, Rotating Cylinders.

UNIT – IV
THEORY OF PLATES: Introduction; Stress resultants in a flat plate; Kinematics: Strain-Displacement relations for plates; Equilibrium equations for small displacement theory of flat plates; Stress – Strain – Temperature relation for Isotropic plates: Strain energy of a plate; Boundary conditions for plate; Solution of rectangular plate problem; Solution of circular plate problem.
Beams on Elastic Foundation: General theory; Infinite Beam subjected to Concentrated load; boundary conditions; Infinite beam subjected to a distributed lad segment; Semi-infinite beam with concentrated load near its end; Short Beams.

UNIT – V
CONTACT STRESSES: Introduction, problem of determining contact stresses; Assumptions on which a solution for contact stresses is based; Expressions for principal stresses; Methods of computing contact stresses; Deflection of bodies in point contact; Stresses for two bodies in contact over narrow rectangular area (Line contact), Loads normal to area; Stresses for two bodies in line contact. Normal and Tangent to contact area.

REFERENCES:
1. Advanced Mechanics of materials/Seely and Smith/ John Willey
2. Advanced Mechanics of materials / Boresi & Sidebottom/wiely international
3. Advanced strength of materials / Den Hortog J.P./Torrent
4. Theory of Plates /Timoshenko/
5. Strength of materials / Sadhu singh/ Khanna Publishers
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester

L P C
4 - 4

FATIGUE AND FRACTURE MECHANICS

Unit – I
Introduction: - Fracture behavior of metals and alloys. The ductile/brittle transition temperatures for notched and un notched components. Ductile rapture as a failure mechanism. Fracture at elevated temperature.

Unit - II

Unit - III

Unit - IV
Cycle counting methods. Development in using rain flow counting methods to recreate fatigue standard spectra. Standard spectra suitable for different applications.

Unit - V

Fatigue of welded structures: Factors affecting the fatigue lives of welded joints. The codes and standards available to the designer. The use of fracture mechanics to supplement design rules. Practical examples. Introduction to creep phenomena.

Text Books:

3. Plasticity for structural Engineers by W.F Chen and D.J Han, chapter 2 and chapter 3.
UNIT-I:
Introduction to FEM, basic concepts, historical background, applications of FEM, general description, comparison of FEM with other methods, variational approach, Glerkin’s Methods. Coordinates, basic element shapes, interpolation function, Virtual energy principle, Rayleigh – Ritz method, properties of stiffness matrix, treatment of boundary conditions, solution of system of equations, shape functions and characteristics, Basic equations of elasticity, strain-displacement relations.

UNIT-II:
1-D STRUCTURAL PROBLEMS: Axial bar element – stiffness matrix, load vector, temperature effects, Quadratic shape functions and problems.
ANALYSIS OF TRUSSES: Plane Trusses and Space Truss elements and problems

UNIT-III:
3-D PROBLEMS: Tetrahedran element – Jacobian matrix – Stiffness matrix

UNIT-VI:
SCALAR FIELD PROBLEMS: 1-D Heat conduction-Slabs – fins - 2-D heat conduction problems – Introduction to Torsional problems

UNIT-V:

REFERENCES:
2. Finite Element Methods: Basic Concepts and applications, Alavala, PHI
3. Introduction to Finite Elements in Engineering, Chandrupatla, Ashok and Belegundu, Prentice – Hall
7. Finite Element Method – Krishna Murthy / TMH
8. Finite Element Analysis – Bathe / PHI
UNIT – I
Historical background - Viscosity - Viscometry - Effect of temperature on viscosity - Effect of pressure in viscosity - Other physical properties of mineral oils - The generalized Reynolds equation - Flow and shear stress - The energy equation - The equation of state - Mechanism of pressure development.

UNIT – II

UNIT – III
ELASTOHYDRODYNAMIC LUBRICATION: Theoretical consideration - Grubin type solution - Accurate solution - Point contact - Dimensionless parameters - Film thickness equations - Different regimes in EHL contact - Deep-groove radial bearings - Angular contact bearings - Thrust ball bearings - Geometry - Kinematics - Stress and deformations - Load capacity.

UNIT – IV
Surface Topography - Surface characterization - Apparent and real area of contact - Derivation of average Reynolds equation for partially lubricated surface - Effect of surface roughness on journal bearings

UNIT – V

REFERENCES:
1. Introduction to Tribology of Bearings / Majumdar, B.C.
4. Introduction to Tribology / Bharat Bhushan / Wiley / 2nd Edition
5. Engineering Tribology / Prasanta Sahoo / PHI Learning
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester

L P C
4 - 4

CORE ELECTIVE – I
THEORY OF ELASTICITY AND PLASTICITY

UNIT – I
ELASTICITY: Two dimensional stress analysis - Plane stress - Plane strain - Equations of compatibility - Stress function - Boundary conditions.

PROBLEM IN RECTANGULAR COORDINATES - Solution by polynomials - Saint Venent's principles - Determination of displacement - Simple beam problems.

PROBLEMS IN POLAR COORDINATES - General equations in polar coordinates – Stress distribution symmetrical about axis - Strain components in polar coordinates - Simple and symmetric problems

UNIT – II
ANALYSIS OF STRESS AND STRAIN IN THREE DIMENSIONS: Principle stresses - Homogeneous deformations - Strain spherical and deviatoric stress - Hydrostatic strain.

General theorems: Differential equations of equilibrium and compatibility - Displacement - Uniqueness of solution - Reciprocal theorem.

UNIT – III
BENDING OF PRISMATIC BARS: Stress function - Bending of cantilever beam - Beam of rectangular cross-section - Beams of circular cross-section.

UNIT – IV
PLASTICITY: Plastic deformation of metals - Structure of metals - Deformation - Creep stress relaxation of deformation - Strain rate condition of constant maximum shear stress - Condition of constant strain energy - Approximate equation of plasticity.

UNIT – V

REFERENCES:
2. An Engineering Theory of Plasticity/E.P. Unksov/Butterworths
4. Theory of Plasticity for Engineers/Hoffman and Sacks/TMH
5. Theory of Elasticity and Plasticity/Sadhu Singh/ Khanna Publishers
UNIT – I
Introduction, Principles of gear tooth action, Generation of Cycloid and Involute gears, Involutometry, gear manufacturing process and Inspection, gear tooth failure modes, stresses, selection of right king of gears.

Spur Gears: Tooth loads, Principles of Geometry, Design considerations and methodology, Complete design of spur gear teeth considering Lewis beam strength, Buckingham’s dynamic load and wear load. Design of gear shaft and bearings.

UNIT – II
HELICAL GEARS: Tooth loads, Principles of Geometry, Design considerations and methodology, Complete design of helical gear teeth considering Lewis beam strength, Buckingham’s dynamic load and wear load. Design of gear shaft and bearings.

GEAR FAILURES: Analysis of gear tooth failures, Nomenclature of gear tooth wear and failure, tooth breakage, pitting, scoring, wear, overloading, gear-casing problems, lubrication failures.

UNIT – III

UNIT – IV
BEVEL GEARS: Tooth loads, Principles of Geometry, Design considerations and methodology, Complete design of bevel gear teeth considering Lewis beam strength, Buckingham’s dynamic load and wear load. Design of gear shaft and bearings.

UNIT – V
GEAR TRAINS: Simple, compound and epicyclic gear trains, Ray diagrams, Design of a gear box of an automobile, Design of gear trains from the propeller shafts of airplanes for auxiliary systems.

Optimal Gear design: Optimization of gear design parameters. Weight minimization, Constrains in gear train design-space, interference, strength, dynamic considerations, rigidity etc. Compact design of gear trains, multi objective optimization of gear trains. Application of Traditional and non-traditional optimization techniques.
REFERENCES:
1 Machine Design/ Maleev and Hartman/ C.B.S Publishers, India.
6 Machine Design / Schaum series / McGraw Hill
UNIT – I
BASIC CONCEPTS AND CHARACTERISTICS: Geometric and Physical definitions, natural and man-made composites, Aerospace and structural applications, types and classification of composites.

UNIT – II
MICROMECHANICS: Unidirectional composites, constituent materials and properties, elastic properties of a lamina, properties of typical composite materials, laminate characteristics and configurations. Characterization of composite properties.
Manufacturing methods: Autoclave, tape production, moulding methods, filament winding, man layup, pultrusion, RTM.

UNIT – III
Elastic behavior of unidirectional composites: Elastic constants of lamina, relationship between engineering constants and reduced stiffness and compliances, analysis of laminated composites, constitutive relations.

UNIT – IV
STRENGTH OF UNIDIRECTIONAL LAMINA: Micro mechanics of failure, Failure mechanisms, strength of an orthotropic lamina, strength of a lamina under tension and shear maximum stress and strain criteria, application to design. The failure envelope, first ply failure, free-edge effects. Micros mechanical predictions of elastic constants

UNIT – V
ANALYSIS OF LAMINATED COMPOSITE PLATES: Introduction thin plate theory, specially orthotropic plate, cross and angle ply laminated plates, problems using thin plate theory.

REFERENCES:
4. Mechanics of Composite Materials/ Second Edition (Mechanical Engineering)/ Autar K. Kaw ,**Publisher:** CRC
UNIT- I:
PRINCIPLES OF COMPUTER GRAPHICS : Introduction, graphic primitives, point plotting, lines, Bresenham’s circle algorithm, ellipse, transformation in graphics, coordinate systems, view port, 2D and 3D transformation, hidden surface removal, reflection, shading and generation of characters.

UNIT- II:
CAD TOOLS: Definition of CAD Tools, Types of system, CAD/CAM system evaluation criteria, brief treatment of input and output devices. Graphics standard, functional areas of CAD, Modeling and viewing, software documentation, efficient use of CAD software.

GEOMETRICMODELLING: Types of mathematical representation of curves, wire frame models wire frame entities parametric representation of synthetic curves her mite cubic splines Bezier curves B-splines rational curves.

UNIT- III:
SURFACE MODELING :Mathematical representation surfaces, Surface model, Surface entities surface representation, Parametric representation of surfaces, plane surface, rule surface, surface of revolution, Tabulated Cylinder.

UNIT- IV:
PARAMETRIC REPRESENTATION OF SYNTHETIC SURFACES:
Hermite Bicubic surface, Bezier surface, B- Spline surface, COONs surface, Blending surface Sculptured surface, Surface manipulation — Displaying, Segmentation, Trimming, Intersection, Transformations (both 2D and 3D).

UNIT- V:
GEOMETRICMODELLING-3D: Solid modeling, Solid Representation, Boundary Representation (13-rep), Constructive Solid Geometry (CSG).

REFERENCES :
2. CAD/CAM Principles and Applications/ P.N.Rao/TMH/3rd Edition
3. CAD/CAM /Groover M.P./ Pearson education
4. CAD/CAM Concepts and Applications/ Alavala/ PHI
5. CAD / CAM / CIM, Radhakrishnan and Subramanian/ New Age
6. Principles of Computer Aided Design and Manufacturing/ Farid Amirouche/ Pearson
UNIT-I:

UNIT-II:
OPTIMIZATION: One dimensional unconstrained optimization, multidimensional unconstrained optimization – direct methods and gradient search methods, constrained optimization.
Boundary value problems and characteristic value problems: Shooting method – Solution through a set of equations – Derivative boundary conditions – Rayleigh - Ritz method – Characteristic value problems,

UNIT-III:

UNIT-IV:
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS: Solving wave equation by finite differences-stability of numerical method – method of characteristics wave equation in two space dimension-computer programs.

UNIT- V:
Curve fitting and approximation of functions: Least square approximation fitting of non-linear curves by least squares – regression analysis – multiple linear regression, non linear regression – computer programs.

REFERENCES:
1. Numerical Methods for Engineers/ Steven C.Chapra, Raymond P.Canale/ Tata Ma-Graw Hill
UNIT-I
DATA BASE MANAGEMENT SYSTEM

UNIT-II
RELATIONAL MODEL: introduction to the relational model – integrity constraint over relations – enforcing integrity constraints – querying relational data – logical database design – introduction to views – destroying / altering tables and views.

UNIT – III

UNIT-IV
Concurrency Control: serializability and recoverability – introduction to lock management – lock conversions dealing with dead locks – specialized locking techniques concurrency without locking.
UNIT-V

Tree structure Indexing: introduction for tree indexes – indexed sequential access methods (ISAM)-B+ Tress: A dynamic Index structure.

Hash based Indexing: Static Hashing – extendable hashing – Linear Hashing – Extandable vs Linear hashing.

REFERENCES:
4. Introduction to Database Management Systems / C.J.Date/ Pearson Education
6. Database Management Systems/ Elmasri Navrate/ Pearson Education.
7. Database Management Systems /Mathew Leon, Leon Vikas/
8. Database Systems / Connoley/ Pearson Education
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – I – Semester

DYNAMICS & ANALYSIS OF STRUCTURES LABORATORY

List of Experiments:

Section – A

Dynamics Lab

1) To Study the damped torsional oscillations and determine the damping co-efficient.
2) To study the Un – damped free vibration of equivalent spring mass system.
3) To study the forced vibration of equivalent spring mass system.
4) To study the forced lateral vibrations of the beam for different damping.
5) Determination of the magnitude of gyroscopic couple, angular velocity of precession and representation of vectors.
6) Static and Dynamic Balancing apparatus – Rotating Masses.

Section – B

ANALYSIS OF STRUCTURES USING FEA PACKAGES

1. Static Analysis.
2. Modal Analysis.
3. Harmonic Analysis.
4. Spectrum Analysis.
5. Buckling Analysis.
6. Analysis.
7. Fracture mechanics.
8. Transient analysis

Note: Any 10 experiments are to be conducted from the above taking at least 4 from each section.
UNIT – I
ADVANCED KINEMATICS OF PLANE MOTION - I: Introduction to plane motion. The Inflection circle, Euler – Savary Equation, Analytical and graphical determination of di , Bobillier’s Construction , Collineation axis , Hartmann’s Construction ,Inflection circle for the relative motion of two moving planes, Application of the Inflection circle to kinematic analysis.

UNIT – II
ADVANCED KINEMATICS OF PLANE MOTION - II: Polode curvature, Hall’s Equation, Polode curvature in the four bar mechanism, coupler motion, relative motion of the output and input links, Determination of the output angular acceleration and its Rate of change, Freudenstein’s collineation –axis theorem, Carter –Hall circle, The circling – point curve for the Coupler of a four bar mechanism

UNIT – III
INTRODUCTION TO SYNTHESIS-GRAPHICAL METHODS - I: The Four bar linkage ,Guiding a body through Two distinct positions, Guiding a body through Three distinct positions, The Roto center triangle , Guiding a body through Four distinct positions, Burmester’s curve.

UNIT – IV

UNIT – V

REFERENCE:
5. Kinematics and Dynamics of Machinery/Charles E Wilson/Pearson/3rd Edition
MECHANICAL VIBRATIONS

UNIT- I:
SINGLE DEGREE OF FREEDOM SYSTEMS: Undamped and damped free vibrations; forced vibrations coulomb damping; Response to excitation; rotating unbalance and support excitation; vibration isolation and transmissibility- Response to Non Periodic Excitations: unit impulse, unit step and unit Ramp functions; response to arbitrary excitations, The Convolution Integral; shock spectrum; System response by the Laplace Transformation method.

UNIT- II:
TWO DEGREE FREEDOM SYSTEMS: Principal modes- undamped and damped free and forced vibrations; undamped vibration absorbers.

UNIT-III:
MULTI DEGREE FREEDOM SYSTEMS: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi- rotor systems and geared systems; Discrete- Time systems.
Vibration measuring instruments: Vibrometers, velocity meters & accelerometers.

UNIT- IV:

UNIT V:
NUMERICAL METHODS: Raleigh’s stodola's, Matrix iteration, Rayleigh- Ritz Method and Holzer's methods.

REFERENCES:
1. Mechanical Vibrations/Groover/Nem Chand and Bros
2. Elements of Vibration Analysis by Meirovitch, TMH, 2001
5. Mechanical Vibrations/Debabrata Nag/Wiley
7. Mechanical Vibrations and sound engineering/ A.G.Ambekar/ PHI
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

L P C
4 - 4

EXPERIMENTAL STRESS ANALYSIS

UNIT-I
Introduction, Theory of Elasticity, Plane stress and plane strain conditions, compatibility conditions, problem using plane stress and plane strain conditions, three-dimensional stress strain relations.

Strain measurement methods: various types of strain gauges, electrical resistance strain gauges, semiconductor strain gauge circuits.

UNIT-II
RECORDING INSTRUMENTS: Introduction, static recording and data logging, dynamic recording at very low frequencies, dynamic recording at intermediate frequencies, dynamic recording at high frequencies, dynamic recording at very high frequencies, telemetry systems.

UNIT-III
BRITTLE COATINGS: Introduction, coating stresses, failure theories, brittle coating crack patterns, crack detection, ceramic based brittle coatings, resin based brittle coatings, test procedures for brittle coatings analysis, calibration procedures, analysis of brittle coating data.

Moire Methods: Introduction, mechanism of formation of Moire fringes, the geometrical approach to moiré-fringe analysis, the displacement field approach to Moire-fringe analysis, out of plane displacement measurements, out of plane slope measurements, sharpening and multiplication of moiré-fringes, experimental procedure and techniques.

UNIT-IV
PHOTO ELASTICITY: Photo elasticity, polariscope, plane and circularly polarized light, bright and dark filed setup, photo elasticity materials,, Isochromatic fringes – Isoclinics.

UNIT-V
THREE DIMENSIONAL PHOTO ELASTICITY: introduction, locking in model deformation, materials for three dimensional photo elasticity, machining cementing and slicing three dimensional models, slicing the model and interpretation of the resulting fringe patterns, effective stresses, the shear-difference method in three dimensions, applications of the Frozen-stress method, the scattered-light method

REFERENCES:
1. Theory of elasticity / Timoshenko and Goodier Jr.
2. Experimental Stress analysis/ Dally and Riley, Mc Graw-Hill
4. Photo Elasticity / Frocht/ Wiley / 3rd Edition
5. Experimental Stress Analysis / Sadhu singh / Khanna Publications
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

L P C
4 - 4

CORE ELECTIVE – III

PRESSURE VESSEL DESIGN

UNIT – I

Theory of thick cylinders: Shrink fit stresses in built up cylinders – auto freltage of thick cylinders

Thermal stresses in Pressure Vessels.

UNIT – II
THEORY OF RECTANGULAR PLATES : Pure bending – different edge conditions.

Theory circular plates: Simple support and clamped ends subjected to concentrated and uniformly distributed loads-stresses from local loads. Design of dome bends, shell connections, flat heads and cone openings

UNIT – III
DISCONTINUITY STRESSES IN PRESSURE VESSELS: Introduction beam on an elastic foundation, infinitely long beam semi infinite beam, cylindrical vessel under axially symmetrical loading, extent and significance of load deformations on pressure vessels, discontinuity stresses in vessels, stresses in a bimetallic joints, deformation and stresses in flanges.

Pressure vessel materials and their environment : Introduction ductile material tensile tests, structure and strength of steel Leuder’s lines determination of stress patterns from plastic flow observations, behavior of steel beyond the yield point, effect of cold work or strain hardening on the physical properties of pressure vessel steels fracture types in tension.

Toughness of materials, effect of neutron irradiation of steels, fatigue of metals, fatigue crack growth fatigue life prediction cumulative fatigue damage stress theory of failure of vessels subject to steady state and fatigue conditions.

UNIT IV
STRESS CONCENTRATIONS: Influence of surface effects on fatigue, effect of the environment and other factors on fatigue life thermal stress fatigue creep and rupture of metals at elevated temperatures, hydrogen embitterment of pressure vessel steels brittle fracture effect of environment on fracture toughness, fracture toughness relationships criteria for design with defects, significance of fracture mechanics evaluations, effect of warm prestressing on the ambient temperature toughness of pressure vessel steels.
UNIT V

DESIGN FEATURES: Localized stresses and their significance, stress concentration at a variable thickness transition section in a cylindrical vessel, stress concentration about a circular hole in a plate subject to tension, elliptical openings, stress concentration, stress concentration factors for position, dynamic and thermal transient conditions, theory of reinforced openings and reinforcement, placement and shape fatigue and stress concentration.

REFERENCES:
2. Pressure Vessel Design and Analysis / Bickell M. B. Ruizes / Macmillan Publishers
4. Indian standard code for unfired Pressure vessels IS 2825.
UNIT – I
Design process and methodologies of systematic design conceptual design variants and evaluation Standardization and its exploitation in design.

UNIT – II
Tolerance from process and function, interchangeability and selective assembly, selection of fits for different design situations, surface finish. Load transmission, load equalization light weigh and rigid constructions.

UNIT – III
Design of case, forged sheet metal parts and welded constructions Machine considerations.

UNIT – IV
Design for assembly and dismantling Modular constructions erection, operation inspection and maintenance considerations, Ergonomics Design of accuracy Location pins and registers, Machining in assembly, adjustment, Backlash and Clearance adjustment.

UNIT – V
Problems formulation for design optimization Example illustration the various principles available design variants for some of the common basic functional requirements.

REFERENCES:
2. Engineering Design a material and processing approach/ George Dieter/ McGraw Hi8ll international book company 1983
3. Mechanical Design Theory Methodology/ Manjula B. Waldron and Kenneth J. Waldron/
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

L P C
4 - 4

CORE ELECTIVE – III

INDUSTRIAL ROBOTICS

UNIT – I
INTRODUCTION: Automation and Robotics, Robot anatomy, robot configuration, motions joint notation work volume, robot drive system, control system and dynamic performance, precision of movement.
CONTROL SYSTEM AND COMPONENTS: basic concept and modais controllers control system analysis, robot activation and feedback components. Positions sensors, velocity sensors, actuators sensors, power transmission system.

UNIT – II
MOTION ANALYSIS AND CONTROL: Manipulator kinematics, position representation forward transformation, homogeneous transformation, manipulator path control, robot dynamics, configuration of robot controller.

UNIT – III
END EFFECTORS: Grippers-types, operation, mechanism, force analysis, tools as end effectors consideration in gripper selection and design. SENSORS: Desirable features, tactile, proximity and range sensors, uses sensors in robotics.
MACHINE VISION: Functions, Sensing and Digitizing-imaging, Devices, Lighting techniques, Analog to digital single conversion, image storage, Image processing and Analysis-image data reduction, Segmentation feature extraction. Object recognition, training the vision system, Robotics application.

UNIT – IV
ROBOT PROGRAMMING: Lead through programming, Robot programming as a path in space, Motion interpolation, WAIT, SINONAL AND DELAY commands, Branching capabilities and Limitations.
ROBOT LANGUAGES: Textual robot Languages, Generation, Robot language structures, Elements in function.

UNIT – V
ROBOT CELL DESGIN AND CONTROL: Robot cell layouts-Robot centered cell, In-line robot cell, Considerations in work design, Work and control, Inter locks, Error detect ion, Work wheel controller.
ROBOT APPLICATION: Material transfer, Machine loading/unloading. Processing operation, Assembly and Inspection, Feature Application.
REFERENCES:
1. Industrial Robotics / Groover M P /Pearson Edu.
5. Robot Analysis and Intelligence / Asada and Slotine / Wiley Inter-Science.
7. Robotics and Control / Mittal R K & Nagrath I J / TMH
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

<table>
<thead>
<tr>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

CORE ELECTIVE – IV
MECHATRONICS

UNIT-I
Mechatronics systems, elements, levels of Mechatronics system, Mechatronics design process, system, measurement systems, control systems, microprocessor-based controllers, advantages and disadvantages of Mechatronics systems. Sensors and transducers, types, displacement, position, proximity, velocity, motion, force, acceleration, torque, fluid pressure, liquid flow, liquid level, temperature and light sensors.

UNIT-II
Solid state electronic devices, PN junction diode, BJT, FET, DIA and TRIAC. Analog signal conditioning, amplifiers, filtering. Introduction to MEMS & typical applications.

UNIT-III

UNIT-IV
Digital electronics and systems, digital logic control, micro processors and micro controllers, programming, process controllers, programmable logic controllers, PLCs versus computers, application of PLCs for control.

UNIT-V
System and interfacing and data acquisition, DAQS, SCADA, A to D and D to A conversions; Dynamic models and analogies, System response. Design of Mechatronics systems & future trends.

REFERENCES:
6. Mechatronics/M.D.Singh/J.G.Joshi/PHI.
UNIT – I
INTRODUCTION: Finite difference method, finite volume method, finite element method, governing equations and boundary conditions, Derivation of finite difference equations.

UNIT – II

UNIT – III
FORMULATIONS OF INCOMPRESSIBLE VISCOS FLOWS: Formulations of incompressible viscous flows by finite difference methods, pressure correction methods, vortex methods.
Treatment of compressible flows: potential equation, Euler equations, Navier-stokes system of equations, flow field-dependent variation methods, boundary conditions, example problems

UNIT – IV
FINITE VOLUME METHOD: Finite volume method via finite difference method, formulations for two and three-dimensional problems.

UNIT – V
STANDARD VARIATIONAL METHODS: Linear fluid flow problems, steady state problems, Transient problems

REFERENCES:
7. Introduction to Theoretical and Computational Fluid Dynamics/C. Pozrikidis /Oxford University Press/2nd Edition
UNIT –I
BENDING OF LONG RECTANGULAR PLATES TO A CYLINDRICAL SURFACE:
Differential equation for cylindrical bending of plates - Cylindrical bending of uniformly loaded rectangular plates with simply supported edges - Cylindrical bending of uniformly loaded rectangular plates with built-in edges
Pure bending of plates: Slope and curvature of slightly bent plates - Relations between bending moments and curvature in pure bending of plates - Particular cases of pure bending – Strain energy in pure bending of plates.

UNIT –II
SYMMETRICAL BENDING OF CIRCULAR PLATES: Differential equation for symmetrical bending of laterally loaded circular plates - Uniformly loaded circular plates - Circular plate with a circular hole at the center - Circular plate concentrically loaded - Circular plate loaded at the center.
Small deflections of laterally loaded plates: The differential equation of the deflection surface - Boundary conditions - Alternate method of derivation of the boundary condition - Reduction of the problem of bending of a plate to that of deflection of a membrane

UNIT –III
SIMPLY SUPPORTED RECTANGULAR PLATES: Simply supported rectangular plates under sinusoidal load - Navier solution for simply supported rectangular plates.
Rectangular plates with various edge conditions: Bending of rectangular plates by moments distributed along the edges - Rectangular plates with two opposite edges simply supported and the other two edges clamped

UNIT –IV
CONTINUOUS RECTANGULAR PLATES: Simply supported continuous plates – Approximate design of continuous plates with equal spans - Bending symmetrical with respect to a center.
Deformation of shells without bending: Definition and notation - Shells in the form of a surface of revolution and loaded symmetrically with respect to their axis - Particular cases of shells in the form of surfaces of revolution - Shells of constant strength.
UNIT –V

GENERAL THEORY OF CYLINDRICAL SHELLS: A circular cylindrical shell loaded symmetrically with respect to its axis - Particular cases of symmetrical deformation of circular cylindrical shells - Pressure vessels.

REFERENCES:
UNIT - I

UNIT – II

UNIT – III
DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.

UNIT IV

UNIT V
STOCHASTIC PROGRAMMING: Basic concepts of probability theory, random variables – distributions – mean, variance, Correlation, co variance, joint probability distribution – stochastic linear, dynamic programming.

REFERENCES:
1. Optimization theory & Applications/ S.S Rao/ New Age International
2. Introductory to operation research/Kasan & Kumar/Springar
4. Operation Research/H.A. Taha/TMH
5. Optimization in operations research/R.L Rardin
6. Optimization Techniques/Benugundu & Chandraputla/Person Asia
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester L P C
4 - 4

OPEN ELECTIVE – II

SIGNAL ANALYSIS AND CONDITION MONITORING

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
PRACTICAL ANALYSIS OF TRANSIENTS: Analysis as a periodic signal. Analysis by repeated playback (constant bandwidth). Analysis by repeated playback (variable bandwidth).

UNIT-V

REFERENCES:
4. Theory of Machines and Mechanisms/ Amitabh Ghosh & AK Malik/ EWP
ANURAG GROUP OF INSTITUTIONS
(Autonomous)

I - M.Tech – II – Semester

<table>
<thead>
<tr>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

COMPUTER AIDED TESTING AND MODELING LABORATORY

TESTING:

1. Preparation and study of the Micro Structure of ferrous metals and alloys.
2. Preparation and study of the Microstructure of nonferrous metals and alloys.
3. Effect of tempering time on the hardness of quenched carbon steels.
4. Effect of tempering temperature on the hardness of a hardened carbon steels.

MODELING:

1. Surface modeling.
2. Solid modeling.
3. Drafting.
4. Assembling.