ACADEMIC REGULATIONS, COURSE STRUCTURE AND DETAILED SYLLABUS

FOR

M.Tech (WIRELESS AND MOBILE COMMUNICATIONS)

FOR MASTER OF TECHNOLOGY TWO YEAR POST GRADUATE COURSE
(Applicable for the batches admitted from 2015-2016)

ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)
Venkatapur, Ghatkesar, Hyderabad – 501301
R 15 - ACADEMIC REGULATIONS (CBCS) FOR M. Tech. (REGULAR) DEGREE PROGRAMMES

Applicable for the students of M. Tech. (Regular) programme from the Academic Year 2015-16 and onwards

The M. Tech. Degree of Jawaharlal Nehru Technological University Hyderabad shall be conferred on candidates who are admitted to the programme and who fulfill all the requirements for the award of the Degree.

1.0 ELIGIBILITY FOR ADMISSIONS

Admission to the above programme shall be made subject to eligibility, qualification and specialization as prescribed by the University from time to time.

Admissions shall be made on the basis of merit/rank obtained by the candidates at the qualifying Entrance Test conducted by the University or on the basis of any other order of merit as approved by the University, subject to reservations as laid down by the Govt. from time to time.

2.0 AWARD OF M. Tech. DEGREE

2.1 A student shall be declared eligible for the award of the M. Tech. Degree, if he pursues a course of study in not less than two and not more than four academic years, failing which he shall forfeit his seat in M. Tech. programme.

2.2 The student shall register for all 88 credits and secure all the 88 credits.

2.3 The minimum instruction days in each semester are 90.

3.0 COURSES OF STUDY

The following specializations are offered at present for the M. Tech. programme of study.

1. CAD/CAM
2. Computer Networks and Information Security
3. Computer Science
4. Computer Science and Engineering
5. Construction Management
6. Electrical Power Systems
7. Electronics and Communication Engineering
8. Embedded Systems
9. Machine Design
10. Power Electronics and Electrical Drives
11. Software Engineering
12. Structural Engineering
13. VLSI System Design
14. Wireless and Mobile Communication
4 Course Registration

4.1 A ‘Faculty Advisor or Counselor’ shall be assigned to each student, who will advise him on the Post Graduate Programme (PGP), its Course Structure and Curriculum, Choice/Option for Subjects/ Courses, based on his competence, progress, pre-requisites and interest.

4.2 Academic Section of the College invites ‘Registration Forms’ from students with in 15 days from the commencement of class work through ‘ON-LINE SUBMISSIONS’, ensuring ‘DATE and TIME Stamping’. The ON-LINE Registration Requests for any ‘CURRENT SEMESTER’ shall be completed BEFORE the commencement of SEE (Semester End Examinations) of the ‘PRECEDING SEMESTER’.

4.3 A Student can apply for ON-LINE Registration, ONLY AFTER obtaining the ‘WRITTEN APPROVAL’ from his Faculty Advisor, which should be submitted to the College Academic Section through the Head of Department (a copy of it being retained with Head of Department, Faculty Advisor and the Student).

4.4 If the Student submits ambiguous choices or multiple options or erroneous entries -during ON-LINE Registration for the Subject(s) / Course(s) under a given/ specified Course Group/ Category as listed in the Course Structure, only the first mentioned Subject/ Course in that Category will be taken into consideration.

4.5 Subject/ Course Options exercised through ON-LINE Registration are final and CANNOT be changed, nor can they be inter-changed; further, alternate choices will also not be considered. However, if the Subject/ Course that has already been listed for Registration (by the Head of Department) in a Semester could not be offered due to any unforeseen or unexpected reasons, then the Student shall be allowed to have alternate choice - either for a new Subject (subject to offering of such a Subject), or for another existing Subject (subject to availability of seats), which may be considered. Such alternate arrangements will be made by the Head of Department, with due notification and time-framed schedule, within the FIRST WEEK from the commencement of Class-work for that Semester.

5 ATTENDANCE

The programmes are offered on a unit basis with each subject being considered a unit.

5.1 Attendance in all classes (Lectures/Laboratories etc.) is compulsory. The minimum required attendance in each theory / Laboratory etc. is 75% including the days of attendance in sports, games, NCC and NSS activities for appearing for the End Semester examination. A student shall not be permitted to appear for the Semester End Examinations (SEE) if attendance is less than 75%.

5.2 Condonation of shortage of attendance in each subject up to 10% (65% and above and below 75%) in each semester shall be granted by the College Academic Committee on genuine medical grounds and valid reasons on representation by the candidate with supporting evidence.
5.3 Shortage of Attendance below 65% in each subject shall not be condoned.

5.4 Students whose shortage of attendance is not condoned in any subject are not eligible to write their end semester examination of that subject and their registration shall stand cancelled.

5.5 A prescribed fees hall be payable towards condonation of shortage of attendance.

5.6 A candidate shall get minimum required attendance at least in three (3) theory subjects in the present semester to get promoted to the next semester. In order to qualify for the award of the M.Tech Degree, The candidate shall complete all the academic requirements of the subjects, as per the course structure.

5.7 A student shall not be promoted to the next semester unless he satisfies the attendance requirement of the present Semester, as applicable. They may seek readmission into that semester when offered next. If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission in to the same class.

6 EVALUATION

The performance of the candidate in each semester shall be evaluated subject-wise, with a maximum of 100 marks for theory and 100 marks for practicals, on the basis of Internal Evaluation and End Semester Examination.

6.1 For the theory subjects 60 marks shall be awarded for the performance in the Semester End Examination and 40 marks shall be awarded for Continuous Internal Evaluation (CIE). The Continuous Internal Evaluation shall be made based on the average of the marks secured in the two Mid Term-Examinations conducted, one in the middle of the Semester and the other, immediately after the completion of Semester instructions. Each mid-term examination shall be conducted for a total duration of 120 minutes with Part A as compulsory question (10 marks) consisting of 5 sub-questions carrying 2 marks each, and Part B with 3 questions to be answered out of 5 questions, each question carrying 10 marks. The details of the Question Paper pattern for End Examination (Theory) are given below:

- The Semester End Examination will be conducted for 60 marks. It consists of two parts. i). Part-A for 20 marks, ii). Part-B for 40 marks.

- Part-A is a compulsory question consisting of 5 questions, one from each unit and carries 4 marks each.

- Part-B to be answered 5 questions carrying 8 marks each. There will be two questions from each unit and only one should be answered.

6.2 For practical subjects, 60 marks shall be awarded for performance in the Semester End Examinations and 40 marks shall be awarded for day-to-day performance as Internal
6.3 The practical end semester examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed by the Principal from the panel of examiners recommended by Chairman, Board of Studies in respective Branches.

6.4 There shall be two seminar presentations during I year I semester and II semester. For seminar, a student under the supervision of a faculty member, shall collect the literature on a topic and critically review the literature and submit it to the department in a report form and shall make an oral presentation before the Departmental Academic Committee consisting of Head of the Department, Supervisor and two other senior faculty members of the department. For each Seminar there will be only internal evaluation of 50 marks. A candidate has to secure a minimum of 50% of marks to be declared successful. If he fails to fulfill minimum marks, he has to reappear during the supplementary examinations.

6.5 There shall be a Comprehensive Viva-Voce in II year I Semester. The Comprehensive Viva-Voce is intended to assess the students’ understanding of various subjects he has studied during the M. Tech. course of study. The Head of the Department shall be associated with the conduct of the Comprehensive Viva-Voce through a Committee. The Committee consisting of Head of the Department, one senior faculty member and an external examiner. The external examiner shall be appointed by the Principal from the panel of 3 examiners recommended by Chairman, Board of Studies in respective Branches. There are no internal marks for the Comprehensive Viva-Voce and evaluates for maximum of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful. If he fails to fulfill minimum marks, he has to reappear during the supplementary examinations.

6.6 A candidate shall be deemed to have secured the minimum academic requirement in a subject if he secures a minimum of 40% of marks in the Semester End Examination and a minimum aggregate of 50% of the total marks in the Semester End Examination and Continuous Internal Evaluation taken together.

6.7 In case the candidate does not secure the minimum academic requirement in any subject (as specified in 6.6) he has to reappear for the Semester End Examination in that subject.

6.8 A candidate shall be given one chance to re-register for the subjects if the internal marks secured by a candidate is less than 50% and failed in that subject for maximum of two subjects and should register within four weeks of commencement of the class work. In such a case, the candidate must re-register for the subjects and secure the required minimum attendance. The candidate’s attendance in the re-registered subject(s) shall be calculated separately to decide upon his eligibility for writing the Semester End Examination in those subjects. In the event of the student taking another chance, his Continuous Internal Evaluation (internal) marks and Semester End Examination marks obtained in the previous attempt stands cancelled.

6.9 In case the candidate secures less than the required attendance in any subject, he shall not be permitted to write the Semester End Examination in that subject. He shall re-register for the subject when next offered.
Examinations and Assessment - The Grading System

7.1 Marks will be awarded to indicate the performance of each student in each Theory Subject, or Lab/Practicals, or Seminar, or Project, etc., based on the % marks obtained in CIE + SEE (Continuous Internal Evaluation + Semester End Examination, both taken together) as specified in Item 6 above, and a corresponding Letter Grade shall be given.

7.2 As a measure of the student’s performance, a 10-point Absolute Grading System using the following Letter Grades (UGC Guidelines) and corresponding percentage of marks shall be followed:

<table>
<thead>
<tr>
<th>% of Marks Secured (Class Intervals)</th>
<th>Letter Grade (UGC Guidelines)</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% and above (≥ 80%, ≤ 100%)</td>
<td>O (Outstanding)</td>
<td>10</td>
</tr>
<tr>
<td>Below 80% but not less than 70%</td>
<td>A+ (Excellent)</td>
<td>9</td>
</tr>
<tr>
<td>(≥ 70%, < 80%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 70% but not less than 60%</td>
<td>A (Very Good)</td>
<td>8</td>
</tr>
<tr>
<td>(≥ 60%, < 70%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 60% but not less than 55%</td>
<td>B+ (Good)</td>
<td>7</td>
</tr>
<tr>
<td>(≥ 55%, < 60%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 55% but not less than 50%</td>
<td>B (Above Average)</td>
<td>6</td>
</tr>
<tr>
<td>(≥ 50%, < 55%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 50%</td>
<td>F (Fail)</td>
<td>0</td>
</tr>
<tr>
<td>(< 50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>0</td>
</tr>
</tbody>
</table>

7.3 A student obtaining F Grade in any Subject shall be considered ‘failed’ and is be required to reappear as ‘Supplementary Candidate’ in the Semester End Examination (SEE), as and when offered. In such cases, his Internal Marks (CIE Marks) in those Subjects will remain the same as those he obtained earlier.

7.4 A student not appeared for examination then ‘Ab’ Grade will be allocated in any Subject shall be considered ‘failed’ and will be required to reappear as ‘Supplementary Candidate’ in the Semester End Examination (SEE), as and when offered.

7.5 A Letter Grade does not imply any specific Marks percentage and it will be the range of marks percentage.

7.6 In general, a student shall not be permitted to repeat any Subject/ Course (s) only for the sake of ‘Grade Improvement’ or ‘SGPA/ CGPA Improvement’.
7.7 A student earns Grade Point (GP) in each Subject/Course, on the basis of the Letter Grade obtained by him in that Subject/Course. The corresponding ‘Credit Points’ (CP) are computed by multiplying the Grade Point with Credits for that particular Subject/Course.

Credit Points (CP) = Grade Point (GP) x Credits …. For a Course

7.8 The Student passes the Subject/Course only when he **gets GP ≥ 6 (B Grade or above)**.

7.9 The Semester Grade Point Average (SGPA) is calculated by dividing the Sum of Credit Points (ΣCP) secured from ALL Subjects/Courses registered in a Semester, by the Total Number of Credits registered during that Semester. SGPA is rounded off to TWO Decimal Places. SGPA is thus computed as

\[
SGPA = \left(\frac{\sum_{i=1}^{N} C_i G_i}{\sum_{i=1}^{N} C_i} \right) \text{ For each Semester,}
\]

where ‘i’ is the Subject indicator index (takes into account all Subjects in a Semester), ‘N’ is the no. of Subjects ‘REGISTERED’ for the Semester (as specifically required and listed under the Course Structure of the parent Department), C is the no. of Credits allotted to the ith Subject, and G represents the Grade Points (GP) corresponding to the Letter Grade awarded for that ith Subject.

7.10 The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student over all Semesters considered for registration. The CGPA is the ratio of the Total Credit Points secured by a student in ALL registered Courses in ALL Semesters, and the Total Number of Credits registered in ALL the Semesters. CGPA is rounded off to TWO Decimal Places. CGPA is thus computed from the I Year Second Semester onwards, at the end of each Semester, as per the formula

\[
CGPA = \left(\frac{\sum_{j=1}^{M} C_j G_j}{\sum_{j=1}^{M} C_j} \right) \text{ … for all S Semesters registered}
\]

(ie., upto and inclusive of S Semesters, \(S \geq 2 \)),

where ‘M’ is the TOTAL no. of Subjects (as specifically required and listed under the Course Structure of the parent Department) the Student has ‘REGISTERED’ from the 1st Semester onwards upto and inclusive of the Semester S (obviously M > N), ‘j’ is the Subject indicator index (takes into account all Subjects from 1 to S Semesters), C is the no. of Credits allotted to the jth Subject, and G represents the Grade Points (GP) corresponding to the Letter Grade awarded for that jth Subject. After registration and completion of I Year I Semester however, the SGPA of that Semester itself may be taken as the CGPA, as there are no cumulative effects.

7.11 For Calculations listed in Item 7.6 – 7.10, performance in failed Subjects/Courses (securing F Grade) will also be taken into account, and the Credits of such Subjects/Courses will also be included in the multiplications and summations.
8. **EVALUATION OF PROJECT/DISSERTATION WORK**

Every candidate shall be required to submit a thesis or dissertation on a topic approved by the Project Review Committee.

8.1 A Project Review Committee (PRC) shall be constituted with Head of the Department as Chairperson, Project Supervisor and one senior faculty member of the Departments offering the M. Tech. programme.

8.2 Registration of Project Work: A candidate is permitted to register for the project work after satisfying the attendance requirement of all the subjects, both theory and practical.

8.3 After satisfying 8.2, a candidate has to submit, in consultation with his Project Supervisor, the title, objective and plan of action of his project work to the PRC for approval. Only after obtaining the approval of the PRC the student can initiate the Project work.

8.4 If a candidate wishes to change his supervisor or topic of the project, he can do so with the approval of the PRC. However, the PRC shall examine whether or not the change of topic/supervisor leads to a major change of his initial plans of project proposal. If yes, his date of registration for the project work starts from the date of change of Supervisor or topic as the case may be.

8.5 A candidate shall submit his project status report in two stages at least with a gap of 3 months between them.

8.6 The work on the project shall be initiated at the beginning of the II year and the duration of the project is two semesters. A candidate is permitted to submit Project Thesis only after successful completion of all theory and practical courses with the approval of PRC not earlier than 40 weeks from the date of registration of the project work. For the approval of PRC the candidate shall submit the draft copy of thesis to the Head of the Department and make an oral presentation before the PRC.

8.7 Three copies of the Project Thesis certified by the supervisor shall be submitted to the College/School/Institute.

8.8 For Project work **Review I** in II Year I Sem. there is an internal marks of 50, the evaluation should be done by the PRC for 25 marks and Supervisor will evaluate for 25 marks. The Supervisor and PRC will examine the Problem Definition, Objectives, Scope of Work, Literature Survey in the same domain. A candidate has to secure a minimum of 50% of marks to be declared successful for Project Work Review I. If he fails to fulfill minimum marks, he has to reappear as per the recommendations of PRC.

8.9 For Project work **Review II** in II Year II Sem. there is an internal marks of 50, the evaluation should be done by the PRC for 25 marks and Supervisor will evaluate for 25 marks. The PRC will examine the overall progress of the Project Work and decide the Project is eligible for final submission or not. A candidate has to secure a minimum of 50% of marks to be declared successful for Project Work Review II. If he fails to fulfill minimum marks, he has to reappear as per the recommendations of PRC.
8.10 For Project Evaluation (Viva Voce) in II Year II Sem. there is an external marks of 150 and the same evaluated by the External examiner appointed by the Institution. The candidate has to secure minimum of 50% marks in Project Evaluation (Viva-Voce) examination.

8.11 If he fails to fulfill as specified in 8.10, he will reappear for the Viva-Voce examination only after three months. In the reappeared examination also, fails to fulfill, he will not be eligible for the award of the degree.

8.12 The thesis shall be adjudicated by one examiner selected by the Institution. For this, Chairmen, BOS of the respective departments shall submit a panel of 3 examiners, who are eminent in that field with the help of the concerned guide and senior faculty of the department.

8.13 If the report of the examiner is not favourable, the candidate shall revise and resubmit the Thesis. If the report of the examiner is unfavourable again, the thesis shall be summarily rejected.

8.14 If the report of the examiner is favourable, Project Viva-Voce examination shall be conducted by a board consisting of the Supervisor, Head of the Department and the external examiner who adjudicated the Thesis.

8.15 The Head of the Department shall coordinate and make arrangements for the conduct of Project Viva-Voce examination.

9. AWARD OF DEGREE AND CLASS

9.1 A Student who registers for all the specified Subjects/Courses as listed in the Course Structure, satisfies all the Course Requirements, and passes the examinations prescribed in the entire PG Programme (PGP), and secures the required number of 88 Credits (with CGPA ≥ 6.0), shall be declared to have ‘QUALIFIED’ for the award of the M.Tech. Degree in the chosen Branch of Engineering and Technology with specialization as he admitted.

9.2 Award of Class

After a student has satisfied the requirements prescribed for the completion of the programme and is eligible for the award of M. Tech. Degree, he shall be placed in one of the following three classes based on the CGPA:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>≥ 7.75</td>
</tr>
<tr>
<td>First Class</td>
<td>6.75 ≤ CGPA < 7.75</td>
</tr>
<tr>
<td>Second Class</td>
<td>6.00 ≤ CGPA < 6.75</td>
</tr>
</tbody>
</table>

9.3 A student with final CGPA (at the end of the PGP) < 6.00 will not be eligible for the Award of Degree.
10. **WITHHOLDING OF RESULTS**

If the student has not paid the dues, if any, to the institution or if any case of indiscipline is pending against him, the result of the student will be withheld and he will not be allowed into the next semester. His degree will be withheld in such cases.

11. **TRANSITORY REGULATIONS**

11.1 If any candidate is detained due to shortage of attendance in one or more subjects, they are eligible for re-registration to maximum of two earlier or equivalent subjects at a time as and when offered.

11.2 The candidate who fails in any subject will be given two chances to pass the same subject; otherwise, he has to identify an equivalent subject as per R15 Academic Regulations.

12. **GENERAL**

12.1 **Credit**: A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (lecture or tutorial) or two hours of practical work/field work per week.

12.2 **Credit Point**: It is the product of grade point and number of credits for a course.

12.3 Wherever the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”.

12.4 The academic regulation should be read as a whole for the purpose of any interpretation.

12.5 In the case of any doubt or ambiguity in the interpretation of the above rules, the Decision of the Academic Council is final.

12.6 The Academic Council may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the Academic Council.
MALPRACTICES RULES
DISCIPLINARY ACTION FOR IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, cell phones, pager, palm, computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidates has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The hall ticket of the candidate is to be cancelled and sent to the controller of examinations, AGI.</td>
</tr>
<tr>
<td>3. Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination(including practical’s and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>4. Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidates has already</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>examination or answer book or additional sheet, during or after the examination.</td>
<td>appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>5.</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6.</td>
<td>Refuses to obey the orders of the Chief Superintendent/Assistant-Superintendent/any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any office relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the college campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td>8.</td>
<td>Posses any lethal weapon or firearm in the examination hall.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9.</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with college indulges in any malpractice or improper conduct mentioned in clause 6 to 8</td>
</tr>
<tr>
<td>10.</td>
<td>Comes in a drunken condition to the examination hall.</td>
</tr>
<tr>
<td>11.</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
</tr>
<tr>
<td>12.</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the Malpractices committee, AGI for further action to award suitable punishment.</td>
</tr>
</tbody>
</table>
I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Category</th>
<th>Subject</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core course I</td>
<td>Advanced Data Communications</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core course II</td>
<td>TCP/IP and atm networks</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core course III</td>
<td>Advanced digital signal processing</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective I</td>
<td>Detection And Estimation Theory Random Processes And Time Series Analysis RF Circuit Design</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective II</td>
<td>Voice Over Internet Protocol (VOIP) Satellite Communications Spread Spectrum Communications</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Open Elective I</td>
<td>Image and video processing Internetworking Advanced Digital Signal Processing</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory I</td>
<td>Communication Lab – I</td>
<td>40</td>
<td>60</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Seminar I</td>
<td>Seminar</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24</td>
<td>8</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Category</th>
<th>Subject</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core course IV</td>
<td>Coding Theory And Techniques</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core course V</td>
<td>Wireless Communications And Networks</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core course VI</td>
<td>Optical Communications Technology</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective III</td>
<td>Optical Networks Mobile Computing Technologies Adhoc And Wireless Sensor Networks</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective IV</td>
<td>Network Security And Cryptography Propagation Models For Wireless Communication Software Radio</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Open Elective II</td>
<td>Telecommunication Switching Systems And Networks Embedded system Design Mobile Computing Technologies</td>
<td>40</td>
<td>60</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory II</td>
<td>Communication Lab – II</td>
<td>40</td>
<td>60</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Seminar II</td>
<td>Seminar</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24</td>
<td>8</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Subject Name</th>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive Viva-Voce</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Project work Review I</td>
<td>50</td>
<td>--</td>
<td>24</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Subject Name</th>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project work Review II</td>
<td>50</td>
<td>--</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Project Evaluation (Viva-Voce)</td>
<td>--</td>
<td>150</td>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
UNIT -I:
Digital Modulation Schemes: BPSK, QPSK, 8PSK, 16PSK, 8QAM, 16QAM, DPSK – Methods, Band Width Efficiency, Carrier Recovery, Clock Recovery.

UNIT -II:

UNIT -III:
Error Correction: Types of Errors, Vertical Redundancy Check (VRC), LRC, CRC, Checksum, Error Correction using Hamming code Data Link Control: Line Discipline, Flow Control, Error Control

UNIT -IV:
Multiplexing: Frequency Division Multiplexing (FDM), Time Division Multiplexing (TDM), Multiplexing Application, DSL.
Local Area Networks: Ethernet, Other Ether Networks, Token Bus, Token Ring, FDDI.
Metropolitan Area Networks: IEEE 802.6, SMDS
Switching: Circuit Switching, Packet Switching, Message Switching.
Networking and Interfacing Devices: Repeaters, Bridges, Routers, Gateway, Other Devices.

UNIT -V:
Multiple Access Techniques: Random Access, Aloha- Carrier Sense Multiple Access (CSMA)-Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Controlled Access-Reservation- Polling- Token Passing, Channelization, Frequency- Division Multiple Access (FDMA), Time – Division Multiple Access (TDMA), Code - Division Multiple Access (CDMA), OFDM and OFDMA.

TEXT BOOKS:
REFERENCE BOOKS:
1. Data Communications and Computer Networks - Prakash C. Gupta, 2006, PHI.
TCP/IP AND ATM NETWORKS

UNIT –I:
Internet Protocol: Internetworking, IPV4, IPV6, Transition from IPV4 toIpv6.Process to process delivery, UDP, TCP and SCTP.

UNIT –II:
Congestion Control and Quality of Service: Data traffic, congestion, congestion control, two examples, Quality of Service, Techniques to improve QOS, Integrated services, and Differentiated services.

UNIT –III:

UNIT –IV:
X.25:- X.25 Layers, X.21 protocol,

UNIT –V:
Interconnection Networks: Introduction, Banyan Networks, Properties, Crossbar Switch, Three Stage Class Networks, Rearrangeble Networks, Folding Algorithm ,Benes Networks, Lopping Algorithm, Bit Allocation Algorithm.
SONET/SDH:-Synchronous Transport Signals, Physical Configuration, SONET Layers, SONET Frame.

TEXT BOOKS:
1. Data communication and networking. -B.A. Forouzen, 4th Edition TMH

REFERENCE BOOKS:
2. Wireless Digital Communications -Kamilo Feher-1999 PHI
ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)

M.Tech – I Year – I Sem

<table>
<thead>
<tr>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

ADVANCED DIGITAL SIGNAL PROCESSING

UNIT –I:
Review of DFT, FFT, IIR Filters and FIR Filters:
Multi Rate Signal Processing: Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling rate conversion by a rational factor I/D, Multistage Implementation of Sampling Rate Conversion, Filter design & Implementation for sampling rate conversion.

UNIT –II:

UNIT -III:
Non-Parametric Methods of Power Spectral Estimation: of spectra from finite duration observation of signals, Non-parametric Methods: Bartlett, Welch & Blackman-Tukey methods, Comparison of all Non-Parametric methods

UNIT –IV:
Implementation of Digital Filters: Introduction to filter structures (IIR & FIR), Frequency sampling structures of FIR, Lattice structures, Forward prediction error, Backward prediction error, Reflection coefficients for lattice realization, Implementation of lattice structures for IIR filters, Advantages of lattice structures.

UNIT –V:

TEXT BOOKS:

REFERENCE BOOKS:
UNIT –I:

UNIT –II:
Detection Theory: Basic Detection Problem, Maximum A posteriori Decision Rule, Minimum Probability of Error Classifier, Bayes Decision Rule, Multiple-Class Problem (Bayes)- minimum probability error with and without equal a priori probabilities, Neyman-Pearson Classifier, General Calculation of Probability of Error, General Gaussian Problem, Composite Hypotheses.

UNIT –III:
Linear Minimum Mean-Square Error Filtering: Linear Minimum Mean Squared Error Estimators, Nonlinear Minimum Mean Squared Error Estimators. Innovations, Digital Wiener Filters with Stored Data, Real-time Digital Wiener Filters, Kalman Filters.

UNIT –IV:

UNIT –V:

TEXT BOOKS:

REFERENCE BOOKS:
3. Introduction to Statistical Signal Processing with Applications - Srinath, Rajasekaran, Viswanathan, 2003, PHI.
ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)

M.Tech – I Year – I Sem

RANDOM PROCESSES AND TIME SERIES ANALYSIS
(CORE ELECTIVE -I)

UNIT -I:

UNIT -II:

UNIT -III:

UNIT -IV:
Markov Chains: Markov Processes: Discrete time Markov chains, state transition probability matrix, n-step state transition probability, transition diagrams, classification of states, limiting state probabilities, Continuous-time Markov chains, Gambler’s ruin as a Markov chains

UNIT -V:
Basic Queuing Theory: Elements of a Queueing System, Little’s Formula, M/M/1, Queue- Delay Distribution in M/M/1 System, M/M/1 System with Finite Capacity, M/G/1 Queueing system- Residual Service Time, Mean Delay in M/G/1 Systems.

TEXT BOOKS:

REFERENCE BOOKS:
UNIT -I:

UNIT -II:

Single And Multiport Networks: The Smith Chart, Interconnectivity networks, Network properties and Applications, Scattering Parameters.

UNIT- III:

UNIT -IV:

UNIT -V:
Oscillators: Oscillator basics, Low phase noise oscillator design, High frequency Oscillator configuration, LC Oscillators, VCOs, Crystal Oscillators, PLL Synthesizer, and Direct Digital Synthesizer.

RF Mixers: Basic characteristics of a mixer - Active mixers- Image Reject and Harmonic mixers, Frequency domain considerations.

TEXT BOOKS:
REFERENCE BOOKS:
1. Radio frequency and microwave electronics illustrated Mathew M. Radmangh, 2001, PE Asia Publication.
UNIT –I:

UNIT -II:
H.323 and H.245 Standards: The H.323 Architecture, Call Signaling–Call Scenarios, H.245 Control Signaling Conference calls- The Decomposed Gateway.

UNIT –III:
The Session Initiation Protocol (SIP): SIP architecture- Overview of SIP Messaging Syntax- Examples of SIP Message sequences- Redirect Servers- Proxy Servers. The Session Description Protocol (SDP)- Usage of SDP With SIP.

UNIT -IV:

UNIT -V:
VoIP and SS7: The SS7 Protocol Suite- The Message Transfer Part (MTP), ISDN User Part (ISUP) and Signaling Connection Control Part (SCCP), SS7 Network Architecture- Signaling Points(SPs)- Single Transfer Point (STP), - Service Control Point(SCP)- Message Signal Units (MSUs)- SS7 Addressing, ISUP, Performance Requirements for SS7, Sigtran- Sigtran Architecture- SCTP- M3UA Operation- M2UA Operation- M2PA Operation- Interworking SS7 and VoIP Architectures- Interworking Soft switch and SS7- Interworking H.323 and SS7.

TEXT BOOK:
Carrier Grade Voice over IP – Daniel Collins, 2nd ed., TMH.

REFERENCE BOOKS:

SATELLITE COMMUNICATIONS
(CORE ELECTIVE -II)

UNIT -I:

UNIT -II:
Satellite Sub-Systems: Attitude and Orbit Control system, TT&C subsystem, Attitude Control subsystem, Power systems, Communication subsystems, Satellite Antenna Equipment.

Satellite Link: Basic Transmission Theory, System Noise Temperature and G/T ratio, Basic Link Analysis, Interference Analysis, Design of satellite Links for a specified C/N, (With and without frequency Re-use), Link Budget.

UNIT -III:
Propagation Effects: Introduction, Atmospheric Absorption, Cloud Attenuation, Tropospheric and Ionospheric Scintillation and Low angle fading, Rain induced attenuation, rain induced cross polarization interference.

UNIT -IV:
Earth Station Technology: Transmitters, Receivers, Antennas, Tracking Systems, Terrestrial Interface, Power Test Methods, Lower Orbit Considerations.

UNIT -V:
Satellite Packet Communications: Message Transmission by FDMA: M/G/1 Queue, Message Transmission by TDMA, PURE ALOHA-Satellite Packet Switching, Slotted Aloha, Packet Reservation, Tree Algorithm.
TEXT BOOKS:

REFERENCE BOOKS:
UNIT I:

Binary Shift Register Sequences for Spread Spectrum Systems:
Introduction, Definitions, Mathematical Background and Sequence Generator Fundamentals, Maximal Length Sequences, Gold Codes.

UNIT II:
Code Tracking Loops: Introduction, Optimum Tracking of Wideband Signals, Base Band Delay-Lock Tracking Loop, Tau-Dither Non-Coherent Tracking Loop, Double Dither Non-Coherent Tracking Loop.

UNIT III:
Initial Synchronization of the Receiver Spreading Code: Introduction, Problem Definition and the Optimum Synchronizer, Serial Search Synchronization Techniques, Synchronization using a Matched Filter, Synchronization by Estimated the Received Spreading Code.

UNIT IV:
Cellular Code Division Multiple Access (CDMA) Principles: Introduction, Wide Band Mobile Channel, The Cellular CDMA System, Single User Receiver in a Multi User Channel, CDMA System Capacity,

Multi-User Detection in CDMA Cellular Radio: Optimal Multi-User Detection, Linear Suboptimal Detectors, Interference Combat Detection Schemes, Interference Cancellation Techniques.

UNIT V:

Performance of Spread Spectrum Systems with Forward Error Correction: Elementary Block Coding Concepts, Optimum Decoding Rule, Calculation of Error Probability, Elementary Convolution Coding Concepts, Viterbi Algorithm, Decoding and Bit-Error Rate.
TEXT BOOKS:

REFERENCE BOOKS:
UNIT I:
Fundamentals of Image Processing and Image Transforms: Basic steps of Image Processing System Sampling and Quantization of an image, Basic relationship between pixels.

IMAGE SEGMENTATION: Segmentation concepts, Point, Line and Edge Detection, Thresholding, Region based segmentation.

UNIT II:

UNIT III:
Image Compression: Image compression fundamentals - Coding Redundancy, Spatial and Temporal redundancy, Compression models: Lossy & Lossless, Huffman coding, , Bit plane coding, Transform coding, Predictive coding, Wavelet coding, Lossy Predictive coding, JPEG Standards.

UNIT IV:

UNIT V:
2-D Motion Estimation: Optical flow, General Methodologies, Pixel Based Motion Estimation, Block-Matching Algorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based Motion Estimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Video coding.

TEXT BOOKS:

REFERENCE BOOKS:
UNIT -I:

IP Address: Classful Addressing: Introduction, Classful Addressing, Other Issues, Sub-netting, Super-netting.

Classless Addressing: Variable length Blocks, Sub-netting, Address Allocation, Delivery, Forwarding, and Routing of IP Packets: Delivery, Forwarding, Routing, Structure of Router. ARP and RARP: ARP, ARP Package, RARP.

UNIT -II:
Transmission Control Protocol (TCP): TCP Services, TCP Features, Segment, A TConnection, State Transition Diagram, Flow Control, Error Control, Congestion Control, TCP Time Stream
Control Transmission Protocol (SCTP): SCTP Services, SCTP Features, Packet FormFlow
Control, Error Control, Congestion Control.
Mobile IP: Addressing, Agents, Three Phases, Inefficiency in Mobile IP.

UNIT -III:
Unicast Routing Protocols (RIP, OSPF, and BGP): Intra and Inter-domain Routing, Distance VeRouting, RIP, Link State Routing, OSPF, Path Vector Routing, BGP.
Multicasting and Multicast Routing Protocols: Unicast - Multicast- Broadcast, MultiApplications, Multicast Routing, Multicast Link State Routing: MOSPF, Multicast Distance VectDVMRP.

UNIT -IV:
Domain Name System (DNS): Name Space, Domain Name Space, Distribution of Name Spand DNS in the internet.
Remote Login TELNET: Concept, Network Virtual Terminal (NVT).
Electronic Mail: SMTP and POP.
UNIT -V:

TEXT BOOKS:

REFERENCE BOOKS:
ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)

M.Tech – I Year – I Sem

ADVANCED DIGITAL SIGNAL PROCESSING
(OOPEN ELECTIVE - I)

UNIT –I:
Review of DFT, FFT, IIR Filters and FIR Filters:
Multi Rate Signal Processing: Introduction, Decimation by a factor D, Interpolation by a factor I,
Sampling rate conversion by a rational factor I/D, Multistage Implementation of Sampling Rate
Conversion, Filter design & Implementation for sampling rate conversion.

UNIT –II:
Applications of Multi Rate Signal Processing: Design of Phase Shifters, Interfacing of Digital
Systems with Different Sampling Rates, Implementation of Narrow Band Low Pass Filters,
Implementation of Digital Filter Banks, Subband Coding of Speech Signals, Quadrature Mirror
Filters, Transmultiplexers, Over Sampling A/D and D/A Conversion.

UNIT -III:
Non-Parametric Methods of Power Spectral Estimation: of spectra from finite duration
observation of signals, Non-parametric Methods: Bartlett, Welch & Blackman-Tukey methods,
Comparison of all Non-Parametric methods

UNIT –IV:
Implementation of Digital Filters: Introduction to filter structures (IIR & FIR), Frequency
sampling structures of FIR, Lattice structures, Forward prediction error, Backward prediction
error, Reflection coefficients for lattice realization, Implementation of lattice structures for IIR
filters, Advantages of lattice structures.

UNIT –V:
Parametric Methods of Power Spectrum Estimation: Autocorrelation & Its Properties,
Relation between auto correlation & model parameters, AR Models - Yule-Walker & Burg
Methods, MA & ARMA models for power spectrum estimation, Finite word length effect in IIR
digital Filters – Finite word-length effects in FFT algorithms.

TEXT BOOKS:
Manolakis,Ed., PHI.
Education.

REFERENCE BOOKS:
Note:
A. All the Experiments have to be conducted
B. All Experiments may be Simulated using MATLAB and to be verified using related training kits.

1. Design FIR (LP/HP/BP) filter using Window method.
2. Generation of constant envelope PSK signal wave form for different values of M.
3. Simulation of PSK system with M=4
4. Simulation of DPSK system with M=4
5. Design of FSK system
6. Simulation of correlation type demodulation for FSK signal
7. BPSK Modulation and Demodulation techniques
8. QPSK Modulation and Demodulation techniques
9. DQPSK Modulation and Demodulation techniques
10. 8-QAM Modulation and Demodulation techniques

List of Equipment Required:

Software:
1) Operating System: Windows XP or Higher version
2) MATLAB 2015, Version 8.3
3) CC Studio 3.1

Hardware:
1) PC: Processor P- IV
2) Trainer Kits
UNIT -I:
Coding for Reliable Digital Transmission and Storage: Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes: Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT –II:
Cyclic Codes: Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding ,Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT –III:
Convolutional Codes: Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT –IV:

UNIT -V:
BCH – Codes: BCH code- Definition, Minimum distance and BCH Bounds, Decoding Procedure for BCH Codes- Syndrome Computation and Iterative Algorithms, Error Location Polynomials and Numbers for single and double error correction

TEXT BOOKS:
REFERENCE BOOKS:
1. Digital Communications-Fundamental and Application - Bernard Sklar, PE.
3. Introduction to Error Control Codes-Salvatore Gravano-Oxford
UNIT -I:

UNIT –II:

UNIT –III:
Mobile Radio Propagation: Small –Scale Fading and Multipath: Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke’s model for flat fading, spectral shape due to Doppler spread in Clarke’s model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT -IV:

UNIT -V:
Wireless Networks: Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11,IEEE 802.11 Medium Access Control, Comparison of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, Hiper Lan, WLL.

TEXT BOOKS:

REFERENCE BOOKS:
2. Wireless Digital Communications – Kamilo Feher, 1999, PHI.
OPTICAL COMMUNICATIONS TECHNOLOGY

UNIT –I:

UNIT –II:
Fiber Optic Components for Communication & Networking: Couplers, Isolators and Circulators, Multiplexers, Bragg Gratings, Fabry-Perot Filters, Mach Zender Interferometers, Arrayed Waveguide Grating, Tunable Filters, High Channel Count Multiplexer Architectures, Optical Amplifiers, Direct and External Modulation Transmitters, Pump Sources for Amplifiers, Optical Switches and Wavelength Converters.

UNIT –III:

UNIT -IV:

UNIT –V:

TEXT BOOKS:

REFERENCE BOOKS:
UNIT –I:

UNIT –II:

UNIT –III:

UNIT –IV:

UNIT –V:

TEXT BOOKS:

REFERENCE BOOKS:
ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)

M.Tech – I Year – II Sem

MOBILE COMPUTING TECHNOLOGIES
(CORE ELECTIVE – III)

UNIT –I:

UNIT –II:

UNIT –III:

Intelligent Networks and Interworking: Introduction – Fundamentals of Call processing – Intelligence in the Networks – SS#7 Signaling – IN Conceptual Model (INCM) – soft switch – Programmable Networks – Technologies and Interfaces for IN

UNIT –IV:

UNIT –V:
– Convergence Technologies – Call Routing – Voice over IP Applications – IP multimedia subsystem (IMS) – Mobile VoIP

TEXT BOOKS:

REFERENCE BOOKS:
UNIT-I:
Wireless LANS and PANS: Introduction, Fundamentals of WLANS, IEEE 802.11 Standard, HIPERLAN Standard, Bluetooth, Home RF.

Wireless Internet:
Wireless Internet, Mobile IP, TCP in Wireless Domain, WAP, Optimizing Web Over Wireless.

UNIT-II:
AD HOC Wireless Networks: Introduction, Issues in Ad Hoc Wireless Networks, AD Hoc Wireless Internet.

UNIT -III:

UNIT –IV:
Quality of Service: Introduction, Issues and Challenges in Providing QoS in Ad Hoc Wireless Networks, Classification of QoS Solutions, MAC Layer Solutions, Network Layer Solutions, QoS Frameworks for Ad Hoc Wireless Networks.

Energy Management: Introduction, Need for Energy Management in Ad Hoc Wireless

UNIT –V:

TEXT BOOKS:

REFERENCE BOOKS:
UNIT –I:
Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operations.

UNIT –II:
Conventional Encryption: Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT –III:
Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat’s and Euler’s theorems, Testing for primality, Euclid’s Algorithm, the Chinese remainder theorem, Discrete logarithms. Message authentication and Hash Functions: Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs.

UNIT –IV:
Hash and Mac Algorithms: MD File, Message digest Algorithm, Secure Hash Algorithm, RIPEMD- 160, HMAC.

UNIT –V:
Intruders, Viruses and Worms: Intruders, Viruses and Related threats.
Fire Walls: Fire wall Design Principles, Trusted systems.
TEXT BOOK:

REFERENCE BOOK:
Principles of Network and Systems Administration, Mark Burgess, John Wiely
UNIT -I:

UNIT –II:

Pico Cells: Empirical models of propagation with in buildings, physical models of indoor propagation, Models of Propagation into buildings, Ultra wide band indoor propagation, and Indoor link budgets, Introduction of Mega cells.

UNIT –III:
Mega Cells: Shadowing and Fast fading, Empirical Narrowband models, Statistical Models, Physical-Statistical models for built-up areas, and over all mobile satellite channel model.

Shadowing: Statistical characterization, Physical basis for shadowing, Impact on coverage, location variability, correlated shadowing.

UNIT –IV:
Fast Fading: Narrow band fast fading channel, AWGN Channel, Narrow band fading channel, Rayleigh, Rice and Nakagami-m distribution, Wideband fast fading –Effect of wideband fading, wide band channel model and parameters, frequency domain effects and Bello functions.

Overcoming Narrowband Fading: Space diversity, Polarization diversity, Time diversity, frequency diversity, and combining methods

Overcoming Wideband Fading: System modeling, Linear equalizers, Adaptive Equalizers, Non-Linear Equalizers, Rake receivers, and OFDM receivers.

UNIT -V:
Channel Measurements for Mobile Systems: Application for channel measurements, Impact of Measurement in accuracies, Signal sampling issues, measurement systems, equipment calibration and validation, outdoor and indoor measurements.
TEXT BOOKS:

REFERENCE BOOKS:
UNIT -I:
Introduction: The Need for Software Radios, What is Software Radio, Characteristics and benefits of software radio- Design Principles of Software Radio, RF Implementation issues- The Purpose of RF Front – End, Dynamic Range- The Principal Challenge of Receiver Design – RF Receiver Front- End Topologies- Enhanced Flexibility of the RF Chain with Software Radios- Importance of the Components to Overall Performance- Transmitter Architectures and Their Issues- Noise and Distortion in the RF Chain, ADC and DAC Distortion.

UNIT -II:
Multi Rate Signal Processing: Introduction- Sample Rate Conversion Principles- Polyphase Filters- Digital Filter Banks- Timing Recovery in Digital Receivers Using Multirate Digital Filters.

UNIT -III:
Analog to Digital and Digital to Analog Conversion: Parameters of ideal data converters- Parameters of Practical data converters- Analog to Digital and Digital to Analog Conversion- Techniques to improve data converter performance- Common ADC and DAC architectures.

UNIT -IV:
Digital Hardware Choices: Introduction- Key Hardware Elements- DSP Processors- Field Programmable Gate Arrays- Trade-Offs in Using DSPs, FPGAs, and ASICs- Power Management Issues- Using a Combination of DSPs, FPGAs, and ASICs.

UNIT -V:
Object – Oriented Representation of Radios and Network Resources: Networks- Object Oriented Programming- Object Brokers- Mobile Application Environments- Joint Tactical Radio System.

Case Studies in Software Radio Design: Introduction and Historical Perspective, SPEAK easy- JTRS, Wireless Information Transfer System, SDR-3000 Digital Transceiver Subsystem, Spectrum Ware, CHARIOT.

TEXTBOOKS:

REFERENCE BOOKS:
ANURAG GROUP OF INSTITUTIONS
(AUTONOMOUS)

M.Tech – I Year – II Sem

L P C
4 0 4

TELECOMMUNICATION SWITCHING SYSTEMS AND NETWORKS
(OPTIONAL ELECTIVE-II)

UNIT -I:
Crossbar Switching: Principles of Common Control, Touch Tone Dial Telephone, Principles of Crossbar Switching, Crossbar Switch Configurations, Cross point Technology, Crossbar Exchange Organization.

UNIT -II:
Electronic Space Division Switching: Stored Program Control, Centralized SPC, Distributed SPC, Software Architecture, Application Software, Enhanced Services, Two-Stage Networks, Three-Stage Networks, n- Stage Networks.
Time Division Switching: Basic Time Division Space Switching, Basic Time Division Time Switching, Time Multiplexed Space Switching, Time Multiplexed Time Switching, Combination Switching, Three-Stage Combination Switching, n- Stage Combination Switching.

UNIT -III:
Telephone Networks: Subscriber Loop System, Switching Hierarchy and Routing, Transmission Plan, Transmission Systems, Numbering Plan, Charging Plan, Signaling Techniques, In-channel Signaling, Common Channel Signaling, Cellular Mobile Telephony
Signaling: Customer Line Signaling, Audio- Frequency Junctions and Trunk Circuits, FDM Carrier Systems, PCM Signaling, Inter- Register Signaling, Common- Channel Signaling Principles, CCITT Signaling System no.6, CCITT Signaling System no.7, Digital Customer Line Signaling.

UNIT -IV:
Packet Switching: Statistical Multiplexing, Local- Area and Wide- Area Networks, Large-scale Networks, Broadband Networks.
Switching Networks: Single- Stage Networks, Gradings, Link Systems, Grades of service of link systems, Application of Graph Theory to link Systems, Use of Expansion, Call Packing, Rearrangeable Networks, Strict- Sense non-blocking Networks, Sectionalized Switching Networks

UNIT -V:
Telecommunications Traffic: The Unit of Traffic, Congestion, Traffic Measurement, A Mathematical Model, Lost-call Systems, Queuing Systems.

TEXT BOOKS:
1. Telecommunication Switching Systems and Networks- Thiagarajan Viswanathan, 2000, PHI.

REFERENCE BOOKS:
2. Data Communications and Networks- Achyut S. Godbole, 2004, TMH.
UNIT -I:
Introduction to Embedded Systems

UNIT -II:
Typical Embedded System:
Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT -III:
Embedded Firmware:
Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT -IV:
RTOS Based Embedded System Design:
Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.

UNIT -V:
Task Communication:
Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

TEXT BOOK:
1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

REFERENCE BOOKS:
1. Embedded Systems - Raj Kamal, TMH.
4. An Embedded Software Primer - David E. Simon, Pearson Education.
UNIT –I:
Introduction to Mobile Computing Architecture:

UNIT –II:
Cellular Technologies:

UNIT –III:
Wireless Application Protocol (WAP) and Wireless LAN:

UNIT –IV:
Client Programming, Palm OS, Symbian OS, Win CE Architecture:

UNIT –V:
Voice Over Internet Protocol and Convergence:

TEXT BOOKS:

REFERENCE BOOKS:
Note:
A. All the Experiments have to be conducted
B. All Experiments may be Simulated using MATLAB and to be verified using related training kits.

1. Measurement of Bit Error Rate using Binary Data
2. Verification of minimum distance in Hamming code
3. Determination of output of Convolutional Encoder for a given sequence
4. Determination of output of Convolutional Decoder for a given sequence
5. Efficiency of DS Spread- Spectrum Technique
6. Simulation of Frequency Hopping (FH) system
7. Determination of Losses in Optical fiber
8. Calculation of Numerical Aperture in Optical fibers
9. Observing the waveforms at various test points of a mobile phone using Mobile Phone Trainer
10. Characteristics of LASER diode

List of Equipment Required:

Software:
1) Operating System: Windows XP or Higher version
2) MATLAB 2015, Version 8.3

Hardware:
1) PC: Processor P- IV
2) Trainer Kits