

**ACADEMIC REGULATIONS,
COURSE STRUCTURE
AND DETAILED SYLLABUS**

M – PHARMACY (PHARMACOLOGY)

**FOR
M.PHARMACY TWO YEAR PG COURSE
(Applicable for the batches admitted from 2022-2023)**

**SCHOOL OF PHARMACY
ANURAG UNIVERSITY**

Venkatapur, Ghatkesar, Hyderabad – 500088

Academic Regulations - for M. Pharm (Regular)

(Effective for the students admitted into I year from the Academic Year 2022-2023 onwards)

ANURAG UNIVERSITY
M. PHARM. (PHARMACOLOGY)
(R22) COURSE STRUCTURE AND SYLLABUS

I YEAR I SEMESTER

Code	Group	Subject	Hrs/Wk	Credits
MPH101T	Theory	Modern Pharmaceutical Analytical Techniques	4	4
MPL102T	Theory	Advanced Pharmacology-I	4	4
MPL103T	Theory	Pharmacological and Toxicological Screening Methods-I	4	4
MPL04T	Theory	Cellular and Molecular Pharmacology	4	4
MPL105P	Lab	Pharmacology Practical I	12	6
MPH106S	-	Seminar/Assignment	7	4
		Total Credits	35	26

I YEAR II SEMESTER

Code	Group	Subject	Hrs/Wk	Credits
MPL201T	Theory	Advanced Pharmacology-II	4	4
MPL202T	Theory	Pharmacological and Toxicological Screening Methods-II	4	4
MPL203T	Theory	Principles of Drug Discovery	4	4
MPL204T	Theory	Clinical Research and Pharmacovigilance	4	4
MPL205P	Lab	Pharmacology Practical II	12	6
MPL206S	-	Seminar/Assignment	7	4
		Total Credits	35	30

II YEAR - I SEMESTER

Code	Subject	Hrs/Wk	Credits
MRM 301T	Research Methodology and Biostatistics*	4	4
	Comprehensive Viva-Voce	-	4
-	Project work Review I	24	12
	Total Credits	24	16

II YEAR - II SEMESTER

Code	Subject	Hrs/Wk	Credits
-	Project work Review II	8	6
-	Project Evaluation (Viva-Voce)	16	12
	Total Credits	24	16

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
4/- 4

(MPH101T)MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES

60 Hours

SCOPE

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

OBJECTIVES

After completion of course student is able to know,

1. The analysis of various drugs in single and combination dosage forms.
2. Theoretical and practical skills of the instruments.

UNIT-I

11 Hours

a) **UV-Visible spectroscopy:** Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UVVisible spectroscopy.

b) **IR spectroscopy:** Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier -Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data interpretation.

c) **Spectroflourimetry:** Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.

d) **Flame emission spectroscopy and Atomic absorption spectroscopy:** Principle, Instrumentation, Interferences and Applications.

UNIT-II

11 Hours

NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and ^{13}C NMR. Applications of NMR spectroscopy.

UNIT-III

11 Hours

Mass Spectroscopy: Principle, Theory, Instrumentation of Mass Spectroscopy, Different types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy.

UNIT-IV

11 Hours

Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution, isolation of drugs from excipients, data interpretation and applications of the following:

- a) Paper chromatography
- b) Thin Layer chromatography
- c) High Performance Thin Layer chromatography

- d) Ion exchange chromatography
- e) Column chromatography
- f) Gas chromatography
- g) High Performance Liquid chromatography
- h) Ultra High Performance Liquid chromatography
- g) Affinity chromatography
- h) Gel Chromatography

UNIT-V

16 Hours

- a)**Electrophoresis:** Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:
 - i) Paper electrophoresis
 - ii) Gel electrophoresis
 - iii) Capillaryelectrophoresis
 - iv) Zone electrophoresis
 - v) Moving boundaryelectrophoresis
 - vi) Iso electric focusing
- b)**X ray Crystallography:** Production of X rays, Different X raydiffraction methods, Bragg's law, Rotating crystal technique, Xray powder technique, Types of crystals and applications of Xraydiffraction.
- c)**Immunological assays:** RIA (Radio immuno assay), ELISA,Bioluminescence assays.

REFERENCES

1. Spectrometric Identification of Organic compounds - Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
2. Principles of Instrumental Analysis - Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
4. Practical Pharmaceutical Chemistry – Beckett and Stenlake, Vol II, 4thedition, CBS Publishers, New Delhi, 1997.
5. Organic Spectroscopy - William Kemp, 3rd edition, ELBS, 1991.
6. Quantitative Analysis of Drugs in Pharmaceutical formulation - P D Sethi, 3rdEdition, CBS Publishers, New Delhi, 1997.
7. Pharmaceutical Analysis- Modern methods – Part B - J W Munson, Volume11, Marcel Dekker Series.
8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley esternLtd., Delhi.
9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley& Sons, 1982.

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
4/- 4

(MPL102T)ADVANCED PHARMACOLOGY-I

60 Hours

SCOPE

The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, this subject helps the students to understand the concepts of drug action and mechanisms involved.

OBJECTIVES

Upon completion of the course the student shall be able to:

1. Discuss the pathophysiology and pharmacotherapy of certain diseases
2. Explain the mechanism of drug actions at cellular and molecular level
3. Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases.

UNIT-I **12Hrs**

General Pharmacology

- a. Pharmacokinetics: The dynamics of drug absorption, distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding.
- b. Pharmacodynamics: Mechanism of drug action and the relationship between drug concentration and effect. Receptors, structural and functional families of receptors, quantitation of drug-receptors interaction and elicited effects.

UNIT-II **12Hrs**

Neurotransmission

- a. General aspects and steps involved in neurotransmission.
- b. Neurohumoral transmission in autonomic nervous system (Detailed study about neurotransmitters- Adrenaline and Acetylcholine).
- c. Neurohumoral transmission in central nervous system (Detailed study about neurotransmitters- histamine, serotonin, dopamine, GABA, glutamate and glycine).
- d. Non adrenergic non cholinergic transmission (NANC). Co-transmission.

Systemic Pharmacology

A detailed study on pathophysiology of diseases, mechanism of action, pharmacology and toxicology of existing as well as novel drugs used in the following systems

Autonomic Pharmacology

Parasympathomimetics and lytics, sympathomimetics and lytics, agents affecting neuromuscular junction

UNIT-III **12Hrs**

Central nervous system Pharmacology

General and local anesthetics

Sedatives and hypnotics, drugs used to treat anxiety.

Depression, psychosis, mania, epilepsy, neurodegenerative diseases.

Narcotic and non-narcotic analgesics.

UNIT-IV **12Hrs****Cardiovascular Pharmacology**

Diuretics, antihypertensives, antiischemics, anti- arrhythmics, drugs for heart failure and hyperlipidemia. Hematinics, coagulants, anticoagulants, fibrinolytics and antiplatelet drugs.

UNIT-V **12Hrs****Autocoid Pharmacology**

The physiological and pathological role of Histamine, Serotonin,

Kinins, Prostaglandins and Opioid autocoids.

Pharmacology of antihistamines, 5HT antagonists.

REFERENCES

1. The Pharmacological Basis of Therapeutics, Goodman and Gillman's.
2. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan, Armen H, Tashjian Jr, Ehrin J, Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers.
3. Basic and Clinical Pharmacology by B.G Katzung.
4. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
5. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C. Yu.
6. Graham Smith. Oxford textbook of Clinical Pharmacology.
7. Avery Drug Treatment.
8. Dapiro Pharmacology, Pathophysiological approach.
9. Green Pathophysiology for Pharmacists.
10. Robbins & Cortham Pathologic Basis of Disease, 9th Ed. (Robbins Pathology).
11. A Complete Textbook of Medical Pharmacology by Dr. S.K Srivastava published by APC Avichal Publishing Company.
12. KD. Tripathi. Essentials of Medical Pharmacology.
13. Modern Pharmacology with Clinical Applications, Craig Charles R. & Stitzel Robert E., Lippincott Publishers.
14. Clinical Pharmacokinetics & Pharmacodynamics: Concepts and Applications – Malcolm Rowland and Thomas N. Tozer, Wolters Kluwer, Lippincott Williams & Wilkins Publishers.
15. Applied biopharmaceutics and Pharmacokinetics, Pharmacodynamics and Drug metabolism for industrial scientists.
16. Modern Pharmacology, Craig CR. & Stitzel RE, Little Brown & Company.

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
4/- 4

(MPL103T) PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING METHODS-I

60 Hours

SCOPE

This subject is designed to impart the knowledge on preclinical evaluation ofdrugs and recent experimental techniques in the drug discovery and development. The subject content helps the student to understand the maintenance of laboratory animals as per the guidelines, basic knowledge of various in-vitro and in-vivo preclinical evaluation processes.

OBJECTIVES

Upon completion of the course the student shall be able to,

1. Appraise the regulations and ethical requirement for the usage of experimental animals.
2. Describe the various animals used in the drug discovery process and good laboratory practices in maintenance and handling of experimental animals
3. Describe the various newer screening methods involved in the drug discovery process
4. Appreciate and correlate the preclinical data to humans

UNIT-I

12Hrs

Laboratory Animals

Common laboratory animals: Description, handling and applications of different species and strains of animals.

Transgenic animals: Production, maintenance and applications.

Anaesthesia and euthanasia of experimental animals.

Maintenance and breeding of laboratory animals.

CPCSEA guidelines to conduct experiments on animals.

Good laboratory practice.

Bioassay-Principle, scope and limitations and methods.

UNIT-II

12Hrs

Preclinical screening of new substances for the pharmacological activity using in vivo, in vitro, and otherpossible animal alternative models.

General principles of preclinical screening.

CNS Pharmacology: behavioral and muscle coordination, CNS stimulants and depressants, anxiolytics, anti-psychotics, anti-epileptics and nootropics. Drugs for neurodegenerative diseases like Parkinsonism, Alzheimers and multiple sclerosis.

Drugs acting on Autonomic Nervous System.

UNIT-III

12Hrs

Preclinical screening of new substances for the pharmacological activity using in vivo, in vitro, and other possible animal alternative models.

Respiratory Pharmacology: anti-asthmatics, drugs for COPD and anti allergics.

Reproductive Pharmacology: Aphrodisiacs and antifertility agents Analgesics, anti-inflammatory and antipyretic agents.

Gastrointestinal drugs: anti-ulcer, anti-emetic, antidiarrheal and laxatives.

UNIT-IV **12Hrs**

Preclinical screening of new substances for the pharmacological activity using in vivo, in vitro, and other possible animal alternative models.

Cardiovascular Pharmacology: antihypertensives, antiarrhythmics, antianginal, antiatherosclerotic agents and diuretics. Drugs for metabolic disorders like anti-diabetic, antidyshilipidemic agents.

Anti-cancer agents.

Hepatoprotective screening methods.

UNIT-V **12Hrs**

Preclinical screening of new substances for the pharmacological activity using in vivo, in vitro, and other possible animal alternative models.

Immunomodulators, Immunosuppressants and immunostimulants.

General principles of immunoassay: theoretical basis and optimization of immunoassay, heterogeneous and homogenous immunoassay systems. Immunoassay methods evaluation; protocol outline, objectives and preparation. Immunoassay for digoxin and insulin.

Limitations of animal experimentation and alternate animal experiments.

Extrapolation of in vitro data to preclinical and preclinical to humans.

REFERENCES

1. Biological standardization by J.H. Burn D.J. Finney and I.G. Goodwin.
2. Screening methods in Pharmacology by Robert Turner. A.
3. Evaluation of drugs activities by Laurence and Bachrach.
4. Methods in Pharmacology by Arnold Schwartz.
5. Fundamentals of experimental Pharmacology by M.N.Ghosh.
6. Pharmacological experiment on intact preparations by Churchill Livingstone.
7. Drug discovery and Evaluation by Vogel H.G.
8. Experimental Pharmacology by R.K.Goyal.
9. Preclinical evaluation of new drugs by S.K. Guta.
10. Handbook of Experimental Pharmacology, SK.Kulkarni.
11. Practical Pharmacology and Clinical Pharmacy, SK.Kulkarni, 3rd Edition.
12. David R.Gross. Animal Models in Cardiovascular Research, 2nd Edition,Kluwer Academic Publishers, London, UK.
13. Screening Methods in Pharmacology, Robert A.Turner.
14. Rodents for Pharmacological Experiments, Dr.Tapan Kumar chatterjee.
15. Practical Manual of Experimental and Clinical Pharmacology by BikashMedhi (Author), Ajay Prakash (Author).

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
4/- 4

(MPL104T)CELLULAR AND MOLECULAR PHARMACOLOGY

60 Hours

SCOPE

The subject imparts a fundamental knowledge on the structure and functions of cellular components and help to understand the interaction of these components with drugs. This information will further help the student to apply the knowledge in drug discovery process.

OBJECTIVES

Upon completion of the course, the student shall be able to,

1. Explain the receptor signal transduction processes.
2. Explain the molecular pathways affected by drugs.
3. Appreciate the applicability of molecular pharmacology and biomarkers in drug discovery process.
4. Demonstrate molecular biology techniques as applicable for pharmacology.

UNIT-I **12Hrs**

Cell biology

Structure and functions of cell and its organelles.

Genome organization. Gene expression and its regulation, importance of siRNA and micro RNA, gene mapping and genesequencing. Cell cycles and its regulation. Cell death – events, regulators, intrinsic and extrinsic pathways of apoptosis. Necrosis and autophagy.

UNIT-II **12Hrs**

Cell signaling

Intercellular and intracellular signaling pathways.

Classification of receptor family and molecular structure ligand gated ion channels; G-protein coupled receptors, tyrosine kinases receptors and nuclear receptors.

Secondary messengers: cyclic AMP, cyclic GMP, calcium ion, inositol 1,4,5-trisphosphate, (IP3), NO, and diacylglycerol. Detailed study of following intracellular signaling pathways: cyclic AMP signaling pathway, mitogen-activated protein kinase (MAPK) signaling, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway.

UNIT-III **12Hrs**

Principles and applications of genomic and proteomic tools

DNA electrophoresis, PCR (reverse transcription and real time), Gene sequencing, micro array technique, SDS page, ELISA and western blotting, Recombinant DNA technology and gene therapy. Basic principles of recombinant DNA technology-Restriction enzymes, various types of vectors. Applications of recombinant DNA technology. Gene therapy- Various types of gene transfer techniques, clinical applications and recent advances in gene therapy.

UNIT-IV **12Hrs**

Pharmacogenomics

Gene mapping and cloning of disease gene. Genetic variation and its role in health/pharmacology. Polymorphisms affecting drug metabolism. Genetic variation in drug transporters. Genetic variation in G protein coupled receptors. Applications of proteomics science: Genomics, proteomics, metabolomics, functionomics, nutrigenomics. Immunotherapeutics. Types of immunotherapeutics, humanization antibody therapy, Immunotherapeutics in clinical practice.

UNIT-V **12Hrs**

a. Cell culture techniques

Basic equipments used in cell culture lab. Cell culture media, various types of cell culture, general procedure for cell cultures; isolation of cells, subculture, cryopreservation, characterization of cells and their application. Principles and applications of cell viability assays, glucose uptake assay, Calcium influx assays. Principles and applications of flow cytometry

b. Biosimilars

REFERENCES

1. The Cell, A Molecular Approach. Geoffrey M Cooper.
2. Pharmacogenomics: The Search for Individualized Therapies. Edited by J. Licinio and M -L. Wong.
3. Handbook of Cell Signaling (Second Edition) Edited by Ralph A. et.al.
4. Molecular Pharmacology: From DNA to Drug Discovery. John Dickenson et.al.
5. Basic Cell Culture protocols by Cheril D. Helgason and Cindy L. Miller.
6. Basic Cell Culture (Practical Approach) by J. M. Davis (Editor).
7. Animal Cell Culture: A Practical Approach by John R. Masters (Editor).
8. Current protocols in molecular biology vol I to VI edited by Frederick M. Ausubelet la.

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

L	T/P	C
-	-/12	6

(MPL105P)PHARMACOLOGY PRACTICAL-I

1. Analysis of pharmacopoeial compounds and their formulations by UV Visspectrophotometer.
2. Simultaneous estimation of multi component containing formulations by UVspectrophotometry.
3. Experiments based on HPLC.
4. Experiments based on Gas Chromatography.
5. Estimation of riboflavin/quinine sulphate by flourimetry.
6. Estimation of sodium/potassium by flame photometry.

Handling of laboratory animals.

1. Various routes of drug administration.
2. Techniques of blood sampling, anesthesia and euthanasia of experimental animals.
3. Functional observation battery tests (modified Irwin test).
4. Evaluation of CNS stimulant, depressant, anxiogenics and anxiolytic, anticonvulsant activity.
5. Evaluation of analgesic, anti-inflammatory, local anesthetic, mydriatic and miotic activity.
6. Evaluation of diuretic activity.
7. Evaluation of antiulcer activity by pylorus ligation method.
8. Oral glucose tolerance test.
9. Isolation and identification of DNA from various sources (Bacteria, Cauliflower, onion, Goat liver).
10. Isolation of RNA from yeast.
11. Estimation of proteins by Bradford/Lowry's in biological samples.
12. Estimation of RNA/DNA by UV Spectroscopy.
13. Gene amplification by PCR.
14. Protein quantification Western Blotting.
15. Enzyme based in-vitro assays (MPO, AChEs, α amylase, α glucosidase).
16. Cell viability assays (MTT/Trypan blue/SRB).
17. DNA fragmentation assay by agarose gel electrophoresis.
18. DNA damage study by Comet assay.
19. Apoptosis determination by fluorescent imaging studies.
20. Pharmacokinetic studies and data analysis of drugs given by different routes of administration using softwares.
21. Enzyme inhibition and induction activity.
22. Extraction of drug from various biological samples and estimation of drugs in biological fluids using different analytical techniques (UV).
23. Extraction of drug from various biological samples and estimation of drugs in biological fluids using different analytical techniques (HPLC).

REFERENCES

1. CPCSEA, OECD, ICH, USFDA, Schedule Y, EPA guidelines.
2. Fundamentals of experimental Pharmacology by M.N.Ghosh.
3. Handbook of Experimental Pharmacology by S.K. Kulkarni.

4. Drug discovery and Evaluation by Vogel H.G.
5. Spectrometric Identification of Organic compounds - Robert M Silverstein.
6. Principles of Instrumental Analysis - Doglas A Skoog, F. James Holler, Timothy A. Nieman.
7. Vogel's Text book of quantitative chemical analysis - Jeffery, Basset, Mendham, Denney.
8. Basic Cell Culture protocols by Cheril D. Helgason and Cindy L.Mille.
9. Basic Cell Culture (Practical Approach) by J. M. Davis (Editor).
10. Animal Cell Culture: A Practical Approach by John R. Masters (Editor).
11. Practical Manual of Experimental and Clinical Pharmacology by BikashMedhi(Author), Ajay Prakash (Author) Jaypee brothers' medical publishersPvt. Ltd.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

T/P C
4/- 4

(MPL201T) ADVANCED PHARMACOLOGY-II

60 Hours

SCOPE

The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, the subject helps the student to understand the concepts of drug action and mechanism involved.

OBJECTIVES

Upon completion of the course the student shall be able to:

1. Explain the mechanism of drug actions at cellular and molecular level
2. Discuss the Pathophysiology and pharmacotherapy of certain diseases
3. Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

UNIT-I

12Hrs

Endocrine Pharmacology

Molecular and cellular mechanism of action of hormones such as growth hormone, prolactin, thyroid, insulin and sex hormones. Anti-thyroid drugs, Oral hypoglycemic agents, Oral contraceptives, Corticosteroids. Drugs affecting calcium regulation.

UNIT-II

12Hrs

Chemotherapy

Cellular and molecular mechanism of actions and resistance of antimicrobial agents such as β -lactams, aminoglycosides, quinolones, Macrolide antibiotics. Antifungal, antiviral, and anti-TB drugs.

UNIT-III

12Hrs

Chemotherapy

Drugs used in Protozoal Infections. Drugs used in the treatment of Helminthiasis. Chemotherapy of cancer. Immunopharmacology. Cellular and biochemical mediators of inflammation and immuneresponse. Allergic or hypersensitivity reactions. Pharmacotherapy of asthma and COPD. Immunosuppressants and Immunostimulants.

UNIT-IV

12Hrs

GIT Pharmacology

Antiulcer drugs, Prokinetics, antiemetics, anti-diarrheals and drugs for constipation and irritable bowel syndrome.

Chronopharmacology

Biological and circadian rhythms, applications of chronotherapy in various diseases like cardiovascular disease, diabetes, asthma and peptic ulcer.

UNIT-V **12Hrs****Free radicals Pharmacology**

Generation of free radicals, role of free radicals in etiopathology of various diseases such as diabetes, neurodegenerative diseases and cancer. Protective activity of certain important antioxidants.

Recent Advances in Treatment: Alzheimer's disease, Parkinson's disease, Cancer, Diabetes Mellitus.

REFERENCES

1. The Pharmacological basis of therapeutics- Goodman and Gill man's.
2. Principles of Pharmacology. The Pathophysiologic basis of drug therapy by David E Golan et al.
3. Basic and Clinical Pharmacology by B.G –Katzung.
4. Pharmacology by H.P. Rang and M.M. Dale.
5. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
6. Text book of Therapeutics, drug and disease management by E T. Herfindal and Gourley.
7. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C. Yu.
8. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists.
9. Robbins & Cortham Pathologic Basis of Disease, 9th Ed. (Robbins Pathology).
10. A Complete Textbook of Medical Pharmacology by Dr. S.K Srivastava published by APC Avichal Publishing Company.
11. KD. Tripathi. Essentials of Medical Pharmacology.
12. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan, Armen H, Tashjian Jr, Ehrin J, Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

T/P C
4/- 4

(MPL202T)PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING METHODS-II

60 Hours

SCOPE

This subject imparts knowledge on the preclinical safety and toxicological evaluation of drug & new chemical entity. This knowledge will make the student competent in regulatory toxicological evaluation.

OBJECTIVES

Upon completion of the course, the student shall be able to,

1. Explain the various types of toxicity studies.
2. Appreciate the importance of ethical and regulatory requirements for toxicity studies.
3. Demonstrate the practical skills required to conduct the preclinical toxicity studies.

UNIT-I

12Hrs

Basic definition and types of toxicology (general, mechanistic, regulatory and descriptive).

Regulatory guidelines for conducting toxicity studies OECD, ICH, EPA and Schedule Y.

OECD principles of Good laboratory practice (GLP).

History, concept and its importance in drug development.

UNIT-II

12Hrs

Acute, sub-acute and chronic- oral, dermal and inhalational studies as per OECD guidelines.

Acute eye irritation, skin sensitization, dermal irritation & dermal toxicity studies.

Test item characterization- importance and methods in regulatory toxicology studies.

UNIT-III

12Hrs

Reproductive toxicology studies, Male reproductive toxicity studies, female reproductive studies (segment I and segment III), teratogenicity studies (segment II), Genotoxicity studies (Ames test, in vitro and in vivo Micronucleus and Chromosomal aberrations studies), In vivo carcinogenicity studies.

UNIT-IV

12Hrs

IND enabling studies (IND studies)- Definition of IND, importance of IND, industry perspective, list of studies needed for IND submission.

Safety pharmacology studies- origin, concepts and importance of safety pharmacology.

Tier1- CVS, CNS and respiratory safety pharmacology, HERG assay. **Tier2-** GI, renal and other studies.

UNIT- V

12Hrs

Toxicokinetics- Toxicokinetic evaluation in preclinical studies, saturation kinetics. Importance and applications of toxicokinetics studies. Alternative methods to animal toxicity testing.

REFERENCES

1. Hand book on GLP, Quality practices for regulated non-clinical researchand development (<http://www.who.int/tdr/publications/documents/glphandbook.pdf>).
2. Schedule Y Guideline: drugs and cosmetics (second amendment) rules,2005, ministry of health and family welfare (department of health) NewDelhi.
3. Drugs from discovery to approval by Rick NG.
4. Animal Models in Toxicology, 3rd Edition, Lower and Bryan.
5. OECD test guidelines.
6. Principles of toxicology by Karen E. Stine, Thomas M. Brown.
7. Guidance for Industry M3(R2) Nonclinical Safety Studies for the Conductof Human Clinical Trials and Marketing Authorization for Pharmaceuticals(<http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073246.pdf>)

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

T/P C
4/- 4

(MPL203T)PRINCIPLES OF DRUG DISCOVERY

60 Hours

SCOPE

The subject imparts basic knowledge of drug discovery process. This information will make the student competent in drug discovery process.

OBJECTIVES

Upon completion of the course, the student shall be able to,

1. Explain the various stages of drug discovery.
2. Appreciate the importance of the role of genomics, proteomics and bioinformatics in drug discovery.
3. Explain various targets for drug discovery.
4. Explain various lead seeking method and lead optimization
5. Appreciate the importance of the role of computer aided drug design in drug discovery.

UNIT-I

12Hrs

An overview of modern drug discovery process: Target identification, target validation, lead identification and lead optimization. Economics of drug discovery. Target Discovery and validation-Role of Genomics, Proteomics and Bioinformatics. Role of Nucleic acid microarrays, Protein microarrays, Antisense technologies, siRNAs, antisense oligonucleotides, Zinc finger proteins. Role of transgenic animals in target validation.

UNIT-II

12Hrs

Lead Identification- combinatorial chemistry & high throughput screening, in silico lead discovery techniques, Assay development for hit identification.

Protein structure- Levels of protein structure, Domains, motifs, and folds in protein structure. Computational prediction of protein structure: Threading and homology modeling methods. Application of NMR and X-ray crystallography in protein structure prediction.

UNIT-III

12Hrs

Rational Drug Design- Traditional vs rational drug design, Methods followed in traditional drug design, High throughput screening, Concepts of Rational Drug Design, Rational Drug Design Methods: Structure and Pharmacophore based approaches, Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based screening.

UNIT-IV

12Hrs

Molecular docking: Rigid docking, flexible docking, manual docking; Docking based screening. De novo drug design. Quantitative analysis of Structure Activity Relationship-History and development of QSAR, SAR versus QSAR, Physicochemical parameters, Hansch analysis, Fie Wilson analysis and relationship between them.

UNIT-V

12Hrs

QSAR Statistical methods – regression analysis, partial leastsquare analysis (PLS) and other multivariate statistical methods.3D-QSAR approaches like COMFA and COMSIA.

Prodrug design-Basic concept, Prodrugs to improve patientacceptability, Drug solubility, Drug absorption and distribution, sitespecific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design.

REFERENCES

1. MouldySioud. Target Discovery and Validation Reviews and Protocols:Volume 2 Emerging Molecular Targetsand Treatment Options. 2007Humana Press Inc.
2. Darryl León. Scott MarkelIn. Silico Technologies in Drug TargetIdentification and Validation.2006 by Taylor and Francis Group, LLC.
3. Johanna K. DiStefano. Disease Gene Identification.Methods andProtocols.Springer New York Dordrecht Heidelberg London.
4. Hugo Kubiny. QSAR: Hansch Analysis and Related Approaches. Methodsand Principles in Medicinal Chemistry. Publisher Wiley-VCH
5. Klaus Gubernator, Hans-Joachim Böhm. Structure-Based Ligand Design.Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
6. Abby L. Parrill. M. Rami Reddy. Rational Drug Design.NovelMethodology and Practical Applications. ACS Symposium Series;American Chemical Society: Washington, DC, 1999.
7. J. Rick Turner. New drug development design, methodology and, analysis.John Wiley & Sons, Inc., New Jersey.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

T/P C
4/- 4

(MPL204T) CLINICAL RESEARCH AND PHARMACOVIGILANCE

60 Hours

SCOPE

This subject will provide a value addition and current requirement for the students in clinical research and pharmacovigilance. It will teach the students on conceptualizing, designing, conducting, managing and reporting of clinical trials. This subject also focuses on global scenario of Pharmacovigilance in different methods that can be used to generate safety data. It will teach the students in developing drug safety data in Pre-clinical, Clinical phases of Drug development and post market surveillance.

OBJECTIVES

Upon completion of the course, the student shall be able to,

1. Explain the regulatory requirements for conducting clinical trial.
2. Demonstrate the types of clinical trial designs.
3. Explain the responsibilities of key players involved in clinical trials.
4. Execute safety monitoring, reporting and close-out activities.
5. Explain the principles of Pharmacovigilance.
6. Detect new adverse drug reactions and their assessment.
7. Perform the adverse drug reaction reporting systems and communication in Pharmacovigilance.

UNIT-I

12Hrs

Regulatory Perspectives of Clinical Trials:

Origin and Principles of International Conference on Harmonization - Good Clinical Practice (ICH-GCP) guidelines.

Ethical Committee: Institutional Review Board, Ethical Guidelines for Biomedical Research and Human Participant-Schedule Y, ICMR.

Informed Consent Process: Structure and content of an Informed Consent Process, Ethical principles governing informed consent process.

UNIT-II

12Hrs

Clinical Trials: Types and Design

Experimental Study- RCT and Non RCT,

Observation Study: Cohort, Case Control, Cross sectional.

Clinical Trial Study Team- Roles and responsibilities of Clinical Trial Personnel: Investigator, Study Coordinator, Sponsor, Contract Research Organization and its management.

UNIT-III

12Hrs

Clinical Trial Documentation- Guidelines to the preparation of documents, Preparation of protocol, Investigator Brochure, Case Report Forms, Clinical Study Report Clinical Trial Monitoring-Safety Monitoring in CT

Adverse Drug Reactions: Definition and types. Detection and reporting methods, Severity and seriousness assessment, Predictability and preventability assessment, Management of adverse drug reactions; Terminologies of ADR.

UNIT-IV **12Hrs**

Basic aspects, terminologies and establishment of pharmacovigilance-History and progress of pharmacovigilance, Significance of safety monitoring, Pharmacovigilance in India and international aspects, WHO international drug monitoring programme, WHO and Regulatory terminologies of ADR, evaluation of medication safety, Establishing pharmacovigilance centres in Hospitals, Industry and National programmes related to pharmacovigilance. Roles and responsibilities in pharmacovigilance.

UNIT-V **12Hrs**

Methods, ADR reporting and tools used in Pharmacovigilance-International classification of diseases, International Nonproprietary names for drugs, Passive and Active surveillance, Comparative observational studies, Targeted clinical investigations and Vaccine safety surveillance. Spontaneous reporting system and Reporting to regulatory authorities, Guidelines for ADRs reporting. Argus, Aris G Pharmacovigilance, VigiFlow, Statistical methods for evaluating medication safety data.

Pharmacoepidemiology, Pharmacoeconomics, safety pharmacology.

REFERENCES

1. Central Drugs Standard Control Organization- Good Clinical Practices, Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health; 2001.
2. International Conference on Harmonization of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice. E6; May 1996.
3. Ethical Guidelines for Biomedical Research on Human Subjects 2000. Indian Council of Medical Research, New Delhi.
4. Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, March 2005, John Wiley and Sons.
5. Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications.
6. Handbook of Clinical Research. Julia Lloyd and Ann Raven Ed. Churchill Livingstone.
7. Principles of Clinical Research edited by Giovanna di Ignazio, DiGiovanna and Haynes.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

L	T/P	C
-	-/12	6

(MPL205P) PHARMACOLOGY PRACTICAL-II

1. To record the DRC of agonist using suitable isolated tissues preparation.
2. To study the effects of antagonist/potentiating agents on DRC of agonist using suitable isolated tissue preparation.
3. To determine to the strength of unknown sample by matching bioassay by using suitable tissue preparation.
4. To determine to the strength of unknown sample by interpolation bioassay by using suitable tissue preparation.
5. To determine to the strength of unknown sample by bracketing bioassay by using suitable tissue preparation.
6. To determine to the strength of unknown sample by multiple point bioassay by using suitable tissue preparation.
7. Estimation of PA2 values of various antagonists using suitable isolated tissue preparations.
8. To study the effects of various drugs on isolated heart preparations.
9. Recording of rat BP, heart rate and ECG.
10. Recording of rat ECG.
11. Drug absorption studies by averted rat ileum preparation.
12. Acute oral toxicity studies as per OECD guidelines.
13. Acute dermal toxicity studies as per OECD guidelines.
14. Repeated dose toxicity studies- Serum biochemical, haematological, urine analysis, functional observation tests and histological studies.
15. Drug mutagenicity study using mice bone-marrow chromosomal aberration test.
16. Protocol design for clinical trial. (3 Nos.)
17. Design of ADR monitoring protocol.
18. In-silico docking studies. (2 Nos.)
19. In-silico pharmacophore based screening.
20. In-silico QSAR studies.
21. ADR reporting.

REFERENCES

1. Fundamentals of experimental Pharmacology-by M.N.Ghosh.
2. Hand book of Experimental Pharmacology-S.K.Kulakarni.
3. Text book of in-vitro practical Pharmacology by Ian Kitchen.
4. Bioassay Techniques for Drug Development by Atta-ur-Rahman, Iqbalchoudhary and William Thomsen.
5. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
6. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists.

ANURAG UNIVERSITY

M.Pharmacy II year II Sem.

T/P C
4 4

(MRM 301T) RESEARCH METHODOLOGY AND BIOSTATISTICS

UNIT – I

12 hrs

General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques.

UNIT – II

12 hrs

Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests(students “t” test, ANOVA, Correlation coefficient, regression), non-parametric tests (wilcoxon rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.

UNIT – III

12 hrs

Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.

UNIT – IV

12 hrs

CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT – V

12 hrs

Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care.