

**ACADEMIC REGULATIONS,
COURSE STRUCTURE
AND DETAILED SYLLABUS**

M – PHARMACY (INDUSTRIAL PHARMACY)

**FOR
M.PHARMACY TWO YEAR PG COURSE
(Applicable for the batches admitted from 2022-2023)**

**SCHOOL OF PHARMACY
ANURAG UNIVERSITY**
Venkatapur, Ghatkesar, Hyderabad – 500088

Academic Regulations - for M. Pharm (Regular)

(Effective for the students admitted into I year from the Academic Year 2022-2023 onwards)

ANURAG UNIVERSITY
M. PHARM. (INDUSTRIAL PHARMACY)
(R20) COURSE STRUCTURE AND SYLLABUS

I YEAR I SEMESTER

Code	Group	Subject	Hrs/Wk	Credits
A41001	Theory	Modern Pharmaceutical Analytical Techniques	4	4
A41011	Theory	Pharmaceutical Formulation Development	4	4
A41012	Theory	Novel Drug Delivery Systems	4	4
A41013	Theory	Intellectual Property Rights	4	4
A41207	Lab	Industrial Pharmacy Practical I	12	6
A41208	-	Seminar/Assignment	7	4
Total Credits			35	26

I YEAR II SEMESTER

Code	Group	Subject	Hrs/Wk	Credits
A42005	Theory	Research Methodology and Biostatistics	4	4
A42007	Theory	Advanced Biopharmaceutics & Pharmacokinetics	4	4
A42014	Theory	Scale Up and Technology Transfer	4	4
A42015	Theory	Pharmaceutical Production Technology	4	4
A42016	Theory	Entrepreneurship Management	4	4
A42207	Lab	Industrial Pharmacy Practical II	12	6
A42208	-	Seminar/Assignment	7	4
Total Credits			39	30

II YEAR - I SEMESTER

Code	Group	Subject	Hrs/Wk	Credits
		Comprehensive Viva-Voce	-	4
-	-	Project work Review I	24	12
		Total Credits	24	16

II YEAR - II SEMESTER

Code	Group	Subject	Hrs/Wk	Credits
-	-	Project work Review II	8	6
-	-	Project Evaluation (Viva-Voce)	16	12
		Total Credits	24	16

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
4/- 4

(A41001)MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES

60 Hours

SCOPE

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

OBJECTIVES

After completion of course student is able to know,

1. The analysis of various drugs in single and combination dosage forms.
2. Theoretical and practical skills of the instruments.

UNIT-I

11 Hours

a) **UV-Visible spectroscopy:** Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UVVisible spectroscopy.

b) **IR spectroscopy:** Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier -Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data interpretation.

c) **Spectrofluorimetry:** Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.

d) **Flame emission spectroscopy and Atomic absorptionspectroscopy:** Principle, Instrumentation, Interferences and Applications.

UNIT-II

11 Hours

NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and ^{13}C NMR. Applications of NMR spectroscopy.

UNIT-III

11 Hours

Mass Spectroscopy: Principle, Theory, Instrumentation of Mass Spectroscopy, Different types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass Spectroscopy.

UNIT-IV

11 Hours

Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution, isolation of drugs from excipients, data interpretation and applications of the following:

- a) Paper chromatography
- b) Thin Layer chromatography
- c) High Performance Thin Layer chromatography

- d) Ion exchange chromatography
- e) Column chromatography
- f) Gas chromatography
- g) High Performance Liquidchromatography
- h) Ultra High Performance Liquidchromatography
- g) Affinity chromatography
- h) Gel Chromatography

UNIT-V

16 Hours

a)**Electrophoresis:** Principle, Instrumentation, Workingconditions, factors affecting separation and applications of thefollowing:

- i) Paper electrophoresis
- ii) Gel electrophoresis
- iii) Capillaryelectrophoresis
- iv) Zone electrophoresis
- v) Moving boundaryelectrophoresis
- vi) Iso electric focusing

b)**X ray Crystallography:** Production of X rays, Different X raydiffraction methods, Bragg's law, Rotating crystal technique, Xray powder technique, Types of crystals and applications of Xraydiffraction.

c)**Immunological assays:** RIA (Radio immuno assay), ELISA,Bioluminescence assays.

REFERENCES

1. Spectrometric Identification of Organic compounds - Robert M Silverstein,Sixth edition, John Wiley & Sons, 2004.
2. Principles of Instrumental Analysis - Doglas A Skoog, F. James Holler,Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
4. Practical Pharmaceutical Chemistry – Beckett and Stenlake, Vol II, 4thedition, CBS Publishers, New Delhi, 1997.
5. Organic Spectroscopy - William Kemp, 3rd edition, ELBS, 1991.
6. Quantitative Analysis of Drugs in Pharmaceutical formulation - P D Sethi, 3rdEdition, CBS Publishers, New Delhi, 1997.
7. Pharmaceutical Analysis- Modern methods – Part B - J W Munson, Volume11, Marcel Dekker Series.
8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley esternLtd., Delhi.
9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley& Sons, 1982.

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
4/- 4

(A41011)PHARMACEUTICAL FORMULATION DEVELOPMENT

60 Hours

SCOPE

This course is designed to impart knowledge and skills necessary to train the students on par with the routine of Industrial activities in R&D and F&D.

OBJECTIVES

Upon completion of the course, student shall be able to understand

1. The scheduled activities in a Pharmaceutical firm.
2. The pre formulation studies of pilot batches of pharmaceutical industry.
3. The significance of dissolution and product stability

UNIT-I

12Hrs

Preformulation Studies: Molecular optimization of APIs (drugsubstances), crystal morphology and variations, powder flow, structure modification, drug-excipient compatibility studies, methods of determination.

UNIT-II

12Hrs

Formulation Additives: Study of different formulation additives, factors influencing their incorporation, role of formulation development and processing, new developments in excipient science. Design of experiments – factorial design for product and process development.

UNIT-III 12Hrs

Solubility: Importance, experimental determination, phasesolubilityanalysis, pH-solubility profile, solubility techniques toimprove solubility and utilization of analytical methods – cosolvency, salt formation, complexation, solid dispersion,micellarsolubilization and hydrotropy.

UNIT-IV 12Hrs

Dissolution: Theories, mechanisms of dissolution, in-vitrodissolution testing models – sink and non-sink. Factors influencing dissolution and intrinsic dissolution studies. Dissolution test apparatus – designs, dissolution testing for conventional and controlled release products. Data handling and correction factor. Biorelevant media, in-vitro and in-vivo correlations, levels of correlations.

UNIT-V 12Hrs

Product Stability: Degradation kinetics, mechanisms, stability testing of drugs and pharmaceuticals, factors influencing media effects and pH effects, accelerated stability studies, interpretation of kinetic data (API & tablets). Solid state stability and shelf life assignment. Stability protocols, reports and ICH guidelines.

REFERENCES

1. Lachman L, Lieberman HA, Kanig JL. The Theory and Practice of Industrial Pharmacy, 3rd ed., Varghese Publishers, Mumbai 1991.
2. Sinko PJ. Martin's physical pharmacy and pharmaceutical sciences, 5th ed., B.I. Publications Pvt. Ltd, Noida, 2006.
3. Lieberman HA, Lachman L, Schwartz JB. Pharmaceutical dosage forms: tablets Vol. I-III, 2nd ed., CBS Publishers & distributors, New Delhi, 2005.
4. Conners KA. A Text book of pharmaceutical analysis Wells JI. Pharmaceutical preformulation: The physicochemical properties of drug substances. Ellis Horwood Ltd., England, 1998.
5. Yalkowsky SH. Techniques of solubilization of drugs. Vol-12. Marcel Dekker Inc., New York, 1981
6. Dressman J, Kramer J. Pharmaceutical dissolution testing. Saurah printerpvt. Ltd., New Delhi, 2005.
7. Sethi PD. Quantitative analysis of drugs in pharmaceutical formulations, 3rded., CBS publications, New Delhi, 2008.
8. Carstensen JT, Rhodes CT. Drug stability principles and practices, 3rd ed., CBS Publishers & distributors, New Delhi, 2005.
9. Yoshioka S, Stella VJ. Stability of drugs and dosage forms, Springer(India) Pvt. Ltd., New Delhi, 2006.
10. Bunker GS, Rhodes CT. Modern Pharmaceutics, 4th ed., Marcel Dekker Inc, New York, 2005.
11. W. Grimm - Stability testing of drug products.
12. Mazzo DJ. International stability testing. Eastern Press Pvt. Ltd., Bangalore, 1999.
13. Beckett AH, Stenlake JB. Practical pharmaceutical chemistry, Part I & II., 4thed., CBS Publishers & distributors, New Delhi, 2004.
14. Indian Pharmacopoeia. Controller of Publication. Delhi, 1996.
15. British Pharmacopoeia. British Pharmacopoeia Commission Office, London, 2008.
16. United States Pharmacopoeia. United States Pharmacopeial Convention, Inc, USA, 2003.
17. Encyclopaedia of Pharm. Technology, Vol I – III.
18. Wells J. I. Pharmaceutical Preformulation: The physicochemical properties of drug substances, Ellis Horwood Ltd. England, 1988.

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
4/- 4

(A41012) NOVEL DRUG DELIVERY SYSTEMS

60 Hours

SCOPE

This course is designed to impart knowledge and skills necessary to train the students in the area of novel drug delivery systems..

OBJECTIVES

On completion of this course it is expected that students will be able to understand,

1. The need, concept, design and evaluation of various customized, sustained and controlled release dosage forms.
2. To formulate and evaluate various novel drug delivery systems.

UNIT-I

12Hrs

Concept & Models for NDDS: Classification of rate controlled drug delivery systems (DDS), rate programmed release, activation modulated & feedback regulated DDS, effect of system parameters in controlled drug delivery, computation of desired release rate and dose for controlled release DDS, pharmacokinetic design for DDS – intermittent, zero order & first order release.

Carriers for Drug Delivery: Polymers / co-polymers introduction, classification, characterization, polymerization techniques, application in CDDS / NDDS, biodegradable & natural polymers.

UNIT-II

20Hrs

a) **Study of Various DDS:** Concepts, design, formulation & evaluation of controlled release oral DDS, Mucoadhesive DDS (buccal, nasal, and pulmonary) Pulsatile, colon specific, liquid sustained release systems, Ocular delivery systems

b) **Transdermal Drug Delivery Systems:** Theory, design, formulation & evaluation including iontophoresis and other latest developments in skin delivery systems.

UNIT-III

12Hrs

Targeted Drug Delivery Systems: Importance, concept, biological process and events involved in drug targeting, design, formulation & evaluation, methods in drug targeting – nanoparticles, liposomes, niosomes, pharmacosomes, resealed erythrocytes, microspheres, magnetic microspheres. Specialized pharmaceutical emulsions – multiple emulsions, micro-emulsions.

UNIT-IV

6Hrs

a) **Protein / Peptide Drug Delivery Systems:** Concepts, delivery techniques, formulation, stability testing, causes of protein destabilization, stabilization methods.

b) **Biotechnology in Drug Delivery Systems:** Brief review of major areas – recombinant DNA technology, monoclonal antibodies, gene therapy.

UNIT-V1

0Hrs

a) **Sub Micron Cosmeceuticals:** Biology, formulation science and evaluation of various cosmetics for skin, hair, nail, eye etc and its regulatory aspects.

b) **New trends for Personalized Medicine:** Introduction, Definition, Pharmacogenetics, Categories of Patients for Personalized Medicines: Customized drug delivery systems, Bioelectronic Medicines, 3D printing of pharmaceuticals, Telepharmacy.

REFERENCES

1. Novel Drug Delivery System, Y.W. Chein, Vol 50, Marcel Dekker, NY.
2. Controlled Drug Delivery Systems, Robinson, Vol 29, Marcel Dekker, NY.
3. Transdermal Controlled Systemic Medications, YW Chein, Vol 31, Marcel Dekker, NY.
4. Bioadhesive DDS, E. Mathiowitz, Vol 98, Marcel Dekker, NY.
5. Nasal System Drug Delivery, K.S.E. Su, Vol 39, Marcel Dekker, NY.
6. Drug Delivery Devices, Vol 32, P Tyle Marcel Dekker, NY.
7. Polymers for Controlled Drug Delivery, P.J. Tarcha, CRC Press.
8. Pharmaceutical Biotechnology, Vyas, CBS, Delhi.
9. Biotechnology of Industrial Antibiotics, E.J. Vandamme, Marcel Dekker, NY.
10. Protein Formulation & Delivery, E.J. McNally, Vol 99, Marcel Dekker, NY.
11. Drug Targeting, M.H. Rubinstein, John Wiley, NY.

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
4/- 4

(A41013)INTELLECTUAL PROPERTY RIGHTS

60 Hours

SCOPE

This course is designed to impart knowledge and skills necessary to train the students to be on par with the routine of Industrial activities in drug regulatory affairs.

OBJECTIVES

On completion of this course it is expected that students will be able to understand,

1. Assist in Regulatory Audit process.
2. Establish regulatory guidelines for drug and drug products
3. The Regulatory requirements for contract research organization

UNIT-I

12Hrs

Definition, Need for patenting, Types of Patents, Conditions to be satisfied by an invention to be patentable, Introduction to patent search. Parts of patents. Filing of patents. The essential elements of patent; Guidelines for preparation of laboratory note book, Non-obviousness in Patent.

UNIT-II

12Hrs

Role of GATT, TRIPS, and WIPO.

UNIT-III

12Hrs

Brief introduction to Trademark protection and WHO Patents. IPR's and its types, Major bodies regulating Indian Pharmaceutical sector.

UNIT-IV

12Hrs

Brief introduction to CDSCO, WHO, USFDA, EMEA, TGA, MHRA, MCC, ANVISA.

UNIT-V

12Hrs

Regulatory requirements for contract research organization. Regulations for Biosimilars.

REFERENCES

1. Pharmaceutical Process Validation: By Fra R. Berry and Robert A. Nash, Vol 57, 2nd Edition.
2. Applied Production and Operation Management By Evans, Anderson and Williams.
3. GMP for pharmaceuticals Material Management by K.K. Ahuja Published by CBS publishers.
4. ISO 9000-Norms and explanations.
5. GMP for pharmaceuticals- Willing S.H. Marcel and Dekker.

ANURAG UNIVERSITY

M.Pharmacy I year I Sem.

T/P C
-/12 6

(A41207)PHARMACEUTICS PRACTICAL I

1. Analysis of pharmacopoeial compounds and their formulations by UV Visspectrophotometer.
2. Simultaneous estimation of multi component containing formulations by UVspectrophotometry.
3. Experiments based on HPLC / GC.
4. Estimation of riboflavin/quinine sulphate by flourimetry.
5. Estimation of sodium/potassium by flame photometry.
6. Effect of surfactants on the solubility of drugs.
7. Effect of pH on the solubility of drugs.
8. Stability testing of solution and solid dosage forms for photo degradation.
9. Stability studies of drugs in dosage forms at 25°C, 60% RH and 40°C, 75% RH.
- 10.Compatibility evaluation of drugs and excipients (DSC & FTIR).
- 11.Preparation and evaluation of different polymeric membranes.
- 12.Formulation and evaluation of sustained release oral matrix tablet/ oralreservoir system.
- 13.Formulation and evaluation of microspheres / microcapsules.
- 14.Formulation and evaluation of transdermal drug delivery systems.
- 15.Design and evaluation of face wash, body- wash, creams, lotions, shampoo,toothpaste, lipstick.
- 16.Electrophoresis of protein solution.
- 17.Preparation and evaluation of Liposome delivery system.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

T/P C
4/- 4

(A42007)ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS

60 Hours

SCOPE

This course is designed to impart knowledge and skills necessary for dose calculations, dose adjustments and to apply Biopharmaceutics theories in practical problem solving.

OBJECTIVES

On completion of this course it is expected that students will be able to understand,

1. The basic concepts in Biopharmaceutics and pharmacokinetics.
2. The use of raw data and derive the pharmacokinetic models and parameters that best describe the process of drug absorption, distribution, metabolism and elimination.
3. To critically evaluate Biopharmaceutics studies involving drug product equivalency.
4. To design and evaluate dosage regimens of the drugs using pharmacokinetic and biopharmaceutic parameters.

UNIT-I

12Hrs

Drug absorption from the gastrointestinal tract: Gastrointestinal tract, Mechanism of drug absorption, Factors affecting, pH-partition theory, Formulation and physicochemical factors: Dissolution rate, Dissolution process, Noyes-Whitney equation and drug dissolution, Factors affecting the dissolution rate. Gastrointestinal absorption: role of the dosage form: Solution (elixir, syrup and solution) as a dosage form, Suspension as a dosage form, Capsule as a dosage form, Tablet as a dosage form, Dissolution methods, Formulation and processing factors, Correlation of in vivo data with in vitro dissolution data. Transport model: Permeability Solubility-Charge State and the pH Partition Hypothesis, Properties of the Gastrointestinal Tract (GIT), pH Microclimate, Intracellular pH Environment, Tight-Junction Complex. Solubility: Experimental methods. Permeability: In-vitro, in-situ and In-vivo methods.

UNIT-II

12Hrs

Biopharmaceutic Considerations in Drug Product Design and In Vitro Drug Product Performance: Introduction, Biopharmaceutic Factors Affecting Drug Bioavailability, Rate-Limiting Steps in Drug Absorption, Physicochemical Nature of the Drug, Formulation Factors Affecting Drug Product Performance, In Vitro: Dissolution and Drug Release Testing, Compendial Methods of Dissolution, Alternative Methods of Dissolution Testing, Meeting Dissolution Requirements, Problems of Variable Control in Dissolution Testing, Performance of Drug Products: In Vitro-In Vivo Correlation, Dissolution Profile Comparisons, Drug Product Stability, Considerations in the Design of a Drug Product.

UNIT-III

12Hrs

Pharmacokinetics: Basic considerations, Pharmacokinetic models, Compartment modeling: One compartment model- IV bolus, IV infusion, Extra-vascular; Multi Compartment model: Two compartment model in brief, Non-Linear Pharmacokinetics: Cause of non-linearity, Michaelis-Menten equation, Estimation K_{max} and V_{max}. Drug interactions: Introduction, The effect of protein-binding interactions, the effect of tissue-binding interactions, Cytochrome P450-based drug interactions, and Drug interactions linked to transporters.

UNIT-IV **12Hrs**

Drug Product Performance, In Vivo: Bioavailability and Bioequivalence: Drug Product Performance, Purpose of Bioavailability Studies, Relative and Absolute Availability, Methods for Assessing Bioavailability, Bioequivalence Studies, Design and Evaluation of Bioequivalence Studies, Study Designs, Crossover Study Designs, Evaluation of the Data, Bioequivalence Example, Study Submission and Drug Review Process, the Biopharmaceutics Classification System, Generic Biologics (Biosimilar Drug Products), Clinical Significance of Bioequivalence Studies, Special Concerns in Bioavailability and Bioequivalence Studies, Generic Substitution.

UNIT-V **12Hrs**

Application of Pharmacokinetics: Modified-Release Drug Products, Targeted Drug Delivery Systems and Biotechnological Products. Relationship between Pharmacokinetics including Pharmacodynamics: Generation of a pharmacokinetic–pharmacodynamic (PKPD) equation, Pharmacokinetic and pharmacodynamic, interactions. Pharmacokinetics and pharmacodynamics of biotechnology drugs: Introduction, Proteins and peptides, Monoclonal antibodies, Oligonucleotides, Vaccines (immunotherapy), Gene therapies.

REFERENCES

1. Biopharmaceutics and Clinical Pharmacokinetics by Milo Gibaldi, 4th edition, Philadelphia, Lea and Febiger, 1991.
2. Biopharmaceutics and Pharmacokinetics, A. Treatise, D. M. Brahmankar and Sunil B.J. Aiswal., VallabPrakashan, Pitampura, Delhi.
3. Applied Biopharmaceutics and Pharmacokinetics by Shargel. LandYuABC, 2nd edition, Connecticut Appleton Century Crofts, 1985.
4. Textbook of Biopharmaceutics and Pharmacokinetics, Dr. Shobha Rani R. Hiremath, Prism Book.
5. Pharmacokinetics by Milo Gibaldi and D. Perrier, 2nd edition, MarcelDekker Inc., New York, 1982.
6. Current Concepts in Pharmaceutical Sciences: Biopharmaceutics, Swarbrick. J, Lea and Febiger, Philadelphia, 1970.
7. Clinical Pharmacokinetics, Concepts and Applications 3rd edition by Malcolm Rowland and Thom~ N. Tozer, Lea and Febiger, Philadelphia, 1995.
8. Dissolution, Bioavailability and Bioequivalence, Abdou. H.M, Mack Publishing Company, Pennsylvania 1989.
9. Biopharmaceutics and Clinical Pharmacokinetics, An Introduction, 4th edition, revised and expanded by Robert. E. Notari, Marcel Dekker Inc, New York and Basel, 1987.
10. Biopharmaceutics and Relevant Pharmacokinetics by John. G Wagner and M. Pemarowski, 1st edition, Drug Intelligence Publications, Hamilton, Illinois, 1971.
11. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James. G. Boylan, Marcel Dekker Inc, New York, 1996.
12. Basic Pharmacokinetics, 1st edition, Sunil S Jambhekar and Philip J. Breen, pharmaceutical press, RPS Publishing, 2009.
13. Absorption and Drug Development- Solubility, Permeability, and ChargeState, Alex Avdeef, John Wiley & Sons, Inc, 2003.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

T/P C
4/- 4

(A42014)SCALE UP ANDTECHNOLOGY TRANSFER

60 Hours

SCOPE

This course is designed to impart knowledge and skills necessary to train the students to be on scale up, technology transfer process and industrial safety issues.

OBJECTIVES

On completion of this course it is expected that students will be able to understand,

1. Manage the scale up process in pharmaceutical industry.
2. Assist in technology transfer.
3. To establish safety guidelines, which prevent industrial hazards.

UNIT-I

12Hrs

Pilot plant design: Basic requirements for design, facility, equipment selection, for tablets, capsules, liquid orals, parenteral and semisolid preparations.

Scale up: Importance, Technology transfer from R & D to pilot plant to plant scale, process scale up for tablets, capsules, liquid orals, semisolids, parenteral, NDDS products – stress on formula, equipments, product uniformity, stability, raw materials, physical layout, input, in-process and finished product specifications, problems encountered during transfer of technology.

UNIT-II

12Hrs

Validation: General concepts, types, procedures & protocols, documentation, VMF. Analytical method validation, cleaning validation and vendor qualification.

UNIT-III

12Hrs

Equipment Qualification: Importance, IQ, OQ, PQ for equipments – autoclave, DHS, membrane filter, rapid mixergranulator, cone blender, FBD, tablet compression machine, liquid filling and sealing machine. Aseptic room validation.

UNIT-IV

12Hrs

Process validation: Importance, validation of mixing, granulation, drying, compression, tablet coating, liquid filling and sealing, sterilization, water process systems, environmental control.

UNIT- V

12Hrs

Industrial safety: Hazards – fire, mechanical, electrical, chemical and pharmaceutical, Monitoring & prevention systems, industrial effluent testing & treatment. Control of environmental pollution.

REFERENCES

1. Pharmaceutical process validation, JR Berry, Nash, Vol 57, Marcel Dekker, NY.
2. Pharmaceutical Production facilities, design and applications, by GC Cole, Taylor and Francis.
3. Pharmaceutical project management, T. Kennedy, Vol 86, Marcel Dekker, NY.
4. The theory & Practice of Industrial Pharmacy, L. Lachman, H.A. Lieberman, Varghese Publ. Bombay.
5. Tablet machine instruments in pharmaceuticals, PR Watt, John Wiley.

6. Pharmaceutical dosage forms, Tablets, Vol 1, 2, 3 by Lachman,Lieberman, Marcel Dekker, NY.
7. Pharmaceutical dosage forms, Parentral medications, Vol 1, 2 by K.E.Avis, Marcel Dekker, NY.
8. Dispersed system Vol 1, 2, 3 by Lachman, Lieberman, Marcel Dekker, NY.
9. Subrahmanyam, CVS, Pharmaceutical production and Management, 2007, VallabhPrakashan, Dehli.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

T/P C
4/- 4

(A42015)PHARMACEUTICAL PRODUCTION TECHNOLOGY

60 Hours

SCOPE

This course is designed to impart knowledge and skills necessary to train the students to be on par with the routine of Industrial activities in Production.

OBJECTIVES

On completion of this course it is expected that students will be able to understand,

1. Handle the scheduled activities in a Pharmaceutical firm.
2. Manage the production of large batches of pharmaceutical formulations.

UNIT-I

12Hrs

Improved Tablet Production: Tablet production process, unit operation improvements, granulation and pelletization equipments, continuous and batch mixing, rapid mixing granulators, rota granulators, spherizers and marumerisers, and other specialized granulation and drying equipments. Problems encountered.

Coating Technology: Process, equipments, particle coating, fluidized bed coating, application techniques. Problems encountered.

UNIT-II

12Hrs

Parenteral Production: Area planning & environmental control, wall and floor treatment, fixtures and machineries, change rooms, personnel flow, utilities & utilities equipment location, engineering and maintenance.

UNIT-III

12Hrs

Lyophilization & Spray drying Technology: Principles, process, freeze-drying and spray drying equipments.

UNIT-IV

12Hrs

Capsule Production: Production process, improved capsule manufacturing and filling machines for hard and soft gelatin capsules. Layout and problems encountered.

Disperse Systems Production: Production processes, applications of mixers, mills, disperse equipments including fine solids dispersion, problems encountered.

Packaging Technology: Types of packaging materials, machinery, labeling, package printing for different dosage forms.

UNIT-V

12Hrs

Air Handling Systems: Study of AHUs, humidity & temperature control, air filtration systems, dust collectors. **Water Treatment Process:** Techniques and maintenance – RO, DM, ultra-filtration, WFI.

REFERENCES

1. The Theory & Practice of Industrial Pharmacy, L. Lachman, VarghesePubl, Bombay.
2. Modern Pharmaceutics by Bunker, Vol 72, Marcel Dekker, NY.
3. Pharmaceutical Dosage Forms, Vol 1, 2, 3 by Lachman, Lieberman,Marcel Dekker, NY.
4. Pharmaceutical Dosage Forms, Parental medications, Vol 1, 2 by K.E.Avis, Marcel Dekker, NY.
5. Pharmaceutical Production Facilities, design and applications, by G.C.Cole, Taylor and Francis.
6. Dispersed System Vol 1, 2, 3 by Lachman, Lieberman, Marcel Dekker, NY.
7. Product design and testing of polymeric materials by N.P. Chezerisionoff.
8. Pharmaceutical Project Management, T.Kennedy, Vol 86, Marcel Dekker, NY.
9. Packaging Pharmaceutical and Health Care, H.Lockhard.
10. Quality Control of Packaging Materials in Pharmaceutical Industy, Kharburn, Marcel Dekker, NY.
11. Freeze drying / Lyophilization of Pharmaceuticals & Biological Products, L.Ray, Vol 96, Marcel Dekker, NY.
12. Tablet Machine Instrumentation In Pharmaceuticals, PR Watt, EllisHorwoods, UK.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

T/P C
4/- 4

(A42016)ENTERPRENEURSHIP MANAGEMENT

60 Hours

SCOPE

This course is designed to impart knowledge and skills necessary to train the students on entrepreneurship management.

OBJECTIVES

On completion of this course it is expected that students will be able to understand,

1. The Role of enterprise in national and global economy
2. Dynamics of motivation and concepts of entrepreneurship
3. Demands and challenges of Growth Strategies and Networking

UNIT-I

12Hrs

Conceptual Frame Work: Concept need and process in entrepreneurship development. Role of enterprise in national and global economy. Types of enterprise – Merits and Demerits. Government policies and schemes for enterprise development. Institutional support in enterprise development and management.

UNIT-II

12Hrs

Entrepreneur: Entrepreneurial motivation – dynamics of motivation. Entrepreneurial competency – Concepts. Developing Entrepreneurial competencies - requirements and understanding the process of entrepreneurship development, self-awareness, interpersonal skills, creativity, assertiveness, achievement, factors affecting entrepreneur role.

UNIT-III

12Hrs

Launching and Organising an Enterprise: Environment scanning – Information, sources, schemes of assistance, problems. Enterprise selection, market assessment, enterprise feasibility study, SWOT Analysis. Resource mobilization - finance, technology, raw material, site and manpower. Costing and marketing management and quality control. Feedback, monitoring and evaluation.

UNIT-IV

12Hrs

Growth Strategies and Networking: Performance appraisal and assessment. Profitability and control measures, demands and challenges. Need for diversification. Future Growth – Techniques of expansion and diversification, vision strategies. Concept and dynamics. Methods, Joint venture, co-ordination and feasibility study.

UNIT-V

12Hrs

Preparing Project Proposal To Start On New Enterprise Project work – Feasibility report; Planning, resource mobilization and implementation.

REFERENCES

1. Akhauri, M.M.P.(1990): Entrepreneurship for Women in India, NIESBUD,New Delhi.
2. Hisrich, R.D & Brush, C.G.(1996) The Women Entrepreneurs, D.C. Health& Co., Toronto.
3. Hisrich, R.D. and Peters, M.P. (1995): Entrepreneurship – Starting, Developing and Managing a New Enterprise, Richard D., Inwin, INC, USA.
4. Meredith, G.G. etal (1982): Practice of Entrepreneurship, ILO, Geneva.
5. Patel, V.C. (1987): Women Entrepreneurship – Developing NewEntrepreneurs, Ahmedabad EDII.

ANURAG UNIVERSITY

M.Pharmacy II year I Sem.

L	T/P	C
4	-/-	4

(A42005) RESEARCH METHODOLOGY AND BIOSTATISTICS

UNIT – I

12Hrs

General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques.

UNIT – II

12Hrs

Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (students "t" test, ANOVA, Correlation coefficient, regression), non-parametric tests (Wilcoxon rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.

UNIT – III

12Hrs

Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.

UNIT – IV

12Hrs

CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT – V

12Hrs

Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care.

ANURAG UNIVERSITY

M.Pharmacy I year II Sem.

L	T/P	C
-	-/12	6

(A42207)INDUSTRIAL PHARMACY PRACTICAL II

1. Improvement of dissolution characteristics of slightly soluble drug by Solid dispersion technique.
2. Comparison of dissolution of two different marketed products /brands.
3. Protein binding studies of a highly protein bound drug & poorly protein bound drug.
4. Bioavailability studies of Paracetamol (Animal).
5. Pharmacokinetic and IVIVC data analysis by WinnolineR software.
6. In vitro cell studies for permeability and metabolism.
7. Formulation and evaluation of tablets.
8. Formulation and evaluation of capsules.
9. Formulation and evaluation of injections.
10. Formulation and evaluation of emulsion.
11. Formulation and evaluation of suspension.
12. Formulation and evaluation of enteric coating tablets.
13. Preparation and evaluation of a freeze dried formulation.
14. Preparation and evaluation of a spray dried formulation.